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This paper reports the results of experiments performed in an effort to find a formulaic relationship
between the interaural waveform coherence of a band of noise �W and the interaural envelope
coherence of the noise band �E. An interdependence described by �E=� /4+ �1−� /4���W�2.1 is
found. This relationship holds true both in a computer experiment and for binaural measurements
made in two rooms using a KEMAR manikin. Room measurements are used to derive a measure of
reliability for the formula. Ultimately, a user who knows the waveform coherence can predict the
envelope coherence with a small degree of uncertainty.
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I. INTRODUCTION

The waveform interaural coherence is defined as the
maximum of the interaural cross-correlation function for val-
ues of lag within limits, e.g., �1 or �2 ms. In psychoacous-
tical studies, it is often measured in one-third octave bands,
which approximately correspond to the critical bandwidth of
the human auditory system �Glasberg and Moore, 1990�.
Measurements of the waveform coherence are relevant in
certain aspects of acoustics, and waveform coherence is of-
ten quoted in studies of rooms. It has been useful, for in-
stance, in determining minimum microphone spacing when
taking room measurements, especially in reverberant rooms
�Jacobsen and Roisin, 2000; Kuster, 2008�, and predicting
acoustical sound quality of concert halls �Hidaka et al.,
1995�. It has increasingly become an important measure in
studies of both human and animal hearing, with applications
to a variety of binaural detection and discrimination tasks
�Bernstein and Trahiotis, 2007; van de Par et al., 2001�, bin-
aural unmasking �Bernstein and Trahiotis, 1992; Culling
et al., 2001; Durlach et al., 1986�, auditory motion tracking
�Grantham and Wightman, 1979�, and is a basic component
of most binaural models, especially involving interaural time
difference detection �Colburn and Durlach, 1978; Jeffress
et al., 1962; Shackleton et al., 2005�. Waveform coherence is
related to the apparent auditory source width, wherein the
apparent auditory source width increases as coherence de-
creases �Ando, 1998; Blauert and Lindemann, 1986�. Re-
cently, it has also been linked to loudness perception �Ed-
monds and Culling, 2009�. In summary, waveform coherence
is an important factor in matters regarding modeling the hu-
man auditory system, the design of various listening spaces,
applications involving virtual audio systems, and measure-
ment of acoustical systems. In these applications, the effect
of coherence on the listener is of primary importance.
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At high frequencies, the ear is insensitive to interaural
differences in the fine structure of signals, but differences in
the envelopes of the signals become important �McFadden
and Pasanen, 1978; Trahiotis et al., 2005�. Coding of fine
structure in the binaural system is lost at frequencies above
1.3 kHz �Zwislocki and Feldman, 1956�, and so only acous-
tical envelopes are represented in binaural neural activity.
Consequentially, the coherence of the envelopes of the sig-
nals in the left and right ears, the “envelope coherence,” is a
more interesting binaural measure than the coherence of the
waveforms of those signals for high-frequency bands �van de
Par and Kohlrausch, 1995�. Envelope coherence has been
linked, for example, to binaural unmasking at high frequen-
cies �Bernstein and Trahiotis, 1992�. Across different envi-
ronments, one expects that these two forms of coherence—
waveform coherence and envelope coherence—will be
related. In an acoustically dry environment where there are
relatively few reflections off room surfaces, one expects that
both coherences will be near unity. In a highly reverberant
environment, both will be small.

The goal of the present work is to explore the relation-
ship between the waveform coherence and the envelope co-
herence. In the literature, reported coherences are waveform
coherences, but a reader may need to know the envelope
coherence present in those studies. It is easier to measure the
waveform coherence than to measure the envelope coherence
since no manipulation of the measured signals needs to be
done prior to calculating the waveform coherence. By con-
trast, in order to calculate envelope coherence, it is necessary
to first construct the envelope of the signals, which involves
either careful low-pass filtering or taking the absolute value
of the analytic Hilbert transforms of the signals. The ideal
result of this work would be a formula by which one could
calculate the envelope coherence having measured the wave-
form coherence. The present work first finds such a formula
for noise bands through a computer simulation. It then re-
ports measurements of the two forms of coherence in two
very different acoustical environments, as measured with a
KEMAR manikin. It is shown that the most plausible rela-

tionship between coherences in actual room environments
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agrees with the formula that emerges from the computer
simulation. Finally, the actual room measurements are used
to derive a measure of reliability for the formula.

II. ELEMENTARY IDEAS

The waveform coherence �W is the maximum value of
the cross-correlation function between a signal in the left ear
xL�t� and a signal in the right xR�t�. The cross-correlation
function is

cc��� =
1

TD
�PLPR

�
0

TD

dt xR�t� xL �t + �� , �1�

where � is the lag, and P refers to the average power of a
signal, averaged over the same span of time, 0 to TD. In
practice, the duration of integration TD is hundreds of times
longer than the longest lag �.

Thus the cross-correlation function is a measure of the
similarity of a signal in the right ear to a signal as it occurs in
the left ear at a later time—a time that is later by �. The
coherence is the maximum value of the cross-correlation
function over all allowed values of �. Therefore, the defini-
tion of coherence must include a limit on �. In this article
that limit is taken to be �1 ms, consistent with standards in
the literature, e.g., Beranek �1986�, since this is approxi-
mately the largest naturally occurring interaural delay in free
field.

The envelope coherence �E is defined in the same way
as the waveform coherence except that the envelopes EL�t�
and ER�t� replace the waveforms x in the equation for the
cross-correlation:

ccE��� =
1
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�PE,LPE,R

�
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dt ER�t� EL�t + �� . �2�

The envelopes of the signals are calculated as the absolute
value of the analytic signal, for example,

ER�t� = �xR�t� + �H�xR�t�	� , �3�

where H represents the Hilbert transform. P is then replaced
by PE, the envelope power, for instance,

PE,L =
1

TD
�

0

TD

dt EL
2�t� . �4�

Some limits to these formulas can be easily derived. If
the signals in the left and right ears are identical then the
waveform coherence and envelope coherence are both equal
to 1.0, the value of the cross-correlation function at �=0. A
value of 1.0 is the largest that the cross-correlation can ever
be. Therefore, the largest possible coherence is 1.0 or 100%.
Also, if the signals are sine tones, the waveform coherence is
1.0 because there is always some value of the lag for which
the tones in the left and right ears are identical so long as the
period of the sine is shorter than twice the maximum lag. In
our case, twice the maximum lag is 2 ms, and the waveform
coherence cannot be limited by that maximum lag so long as
the sine period is shorter than 2 ms �frequency greater than
500 Hz�. The envelope coherence for a sine is always 1,

whatever the frequency, because the envelope is a constant.
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In the present letter, the signals of interest are bands of
Gaussian noise, which were chosen as representative of a
generic signal. The bandwidths are given by the auditory
filter widths of Glasberg and Moore �1990�, approximately
1/3-octave.

For noise bands, the waveform coherence and the enve-
lope coherence have well defined limits. As noted above, if
the noises are the same in both ears, both the waveform
coherence and the envelope coherence are 1.0. In anechoic
environments, where the signals arriving at the two ears are
very similar, waveform coherences arbitrarily close to 1 can
be observed. That limit of perfect coherence places a simple
restriction on any formula designed to relate the envelope
coherence to the waveform coherence—the limit of perfect
correlation. If, on the other hand, the noises in the two ears
are perfectly uncorrelated then the waveform coherence is 0
because epochs when the two channels have the same sign
will be matched, on the average, by epochs when the two
channels have opposite signs. In practice, such a case of
ideally perfect incoherence can occur only if the two wave-
forms are deliberately made to be orthogonal. However, in
highly reverberant environments the waveform coherence
can become close to zero. Thus the perfectly uncorrelated
limit can easily be approached in practice.

In the perfectly uncorrelated limit, the envelope coher-
ence will not be zero because the envelope is never negative.
In this limit, the integral in the cross-correlation is easy to
calculate because the temporal average of the product of the
envelopes is equal to the product of the temporal averages.
van de Par and Kohlrausch �1998� noted that for Gaussian
noise, the envelope is Rayleigh distributed. For a Rayleigh
distribution, the average value is related to the rms value by
a factor of �� /2. Therefore, the coherence is � /4 or 0.7854.
This value sets a second restriction on the relationship be-
tween envelope and waveform coherences, namely, when the
waveform coherence is 0, the expected value of the envelope
coherence is � /4. Because of the absolute value in Eq. �3�,
finding an analytic relationship between waveform and enve-
lope coherences is made difficult, or perhaps impossible.

In an unpublished memorandum of 2004, Bernstein re-
ported a computer experiment to determine the relationship
between interaural waveform coherence and interaural enve-
lope coherence. He tested the form

�E =
�

4
+ b��W�n, �5�

where parameters b and n were unrestrained �n is not an
integer�. He found that this form provided a reasonable fit to
the results of his numerical experiments with b=0.2142 and
n=2.2. Making use of the limits of perfect coherence, we
may refine Bernstein’s equation somewhat to give

�E =
�

4
+ 
1 −

�

4
���W�n. �6�

This is now an equation with one free parameter, the power
n. It should be noted that Bernstein’s value, b=0.2142, is

very close to the exact value 1−� /4=0.2146.
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It is important to note that across the possible range of
coherences �0–1�, the value of n has a rather subtle effect on
�E in Eq. �6�. Consider, for example, n=2.0 versus n=2.2;
the greatest difference between these two functions occurs at
�W=0.62, where the difference is 0.0075—less than 1%. Be-
cause Eq. �6� is somewhat insensitive in this respect to the
exact value of n, all reported values of n given in this paper
will be rounded to the nearest tenths, and uncertainties �in
the form of standard deviations� in the value of n smaller
than �0.05 will be ignored.

III. COMPUTER EXPERIMENT

This section describes computer experiments using
bands of noise. The experiments computed the waveform
coherence and the envelope coherence and plotted one
against the other for thousands of trials. The plots were then
fitted to a function of the form of Eq. �6�. In these computer
experiments, two Gaussian noises were admixed in different
proportions to lead to noise waveforms xL and xR with dif-
fering interaural coherences. The noises were 262 143
samples in length, sampled at a rate of 97.7 kHz. A total of
1001 different admixture proportions were used ranging
from 0% to 100% and leading to waveform coherences rang-
ing from 1.0 to 0.0. The 1001 different noises were time-
domain filtered using gammatone filters1 centered on ISO
one-third octave frequencies from 160 to 10 000 Hz. Be-
cause there are 19 such filters, our experiment consisted of
19 019 different computations. Plots of waveform and enve-
lope coherences, measured from the maxima of waveform
and envelope cross-correlations within the limits −1 ms��
�1 ms, are shown in Fig. 1 for six representative frequency
bands. For each of the 19 bands, a value of n=2.1 resulted in
the best fit to the data. 95% confidence intervals about the
average value of n within each band were all less than
�0.05.

The spread of the data about the best-fitting curve, mea-
sured as root-mean-square error �RMSE�, is generally greater
at lower frequencies than at higher frequencies. RMSEs were
calculated on the scale of coherence �from 0 to 1�. The cal-
culated RMSEs are as high as 0.020 in the 160-Hz band and
decrease steadily to a minimum of 0.0045 for the 10 000-Hz
band. This is likely a bandwidth effect. Since bandwidth is
proportional to the center frequency of the filter band, the
number of degrees of freedom is proportional to the center
frequency. One expects then that the RMSE will be inversely
proportional to the square root of the center frequency. The
best fit power law is close to that rule, RMSE=0.13 f−0.36.

IV. ROOM EXPERIMENT

A. Methods

The computer experiments do not necessarily corre-
spond to any real acoustical environment. Therefore, an ex-
periment was performed with the goal of measuring wave-
form and envelope coherences through ears and comparing
them as in the computer experiments. To accomplish this,
maximum length signals of order 18 �218−1=262 143� were
played at a sample rate of 97.7 kHz through a loudspeaker in

two different rooms. This made for signals about 2.6 s in
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duration, longer than the broadband reverberation times of
the rooms used in this experiment. Signals were recorded in
the ears of a KEMAR and filtered into 19 different bands
with a gammatone filter bank. Cross-correlations of the
waveforms and of the envelopes were computed within each
band.

One of the rooms used was an uncluttered laboratory
space with hard surfaces and no carpeting, 6.5 m�7.5 m
�4.5 m high. The broadband RT60 of this room was ap-
proximately 0.8 s; the RT60 in octave bands between 0.25
and 8 kHz were all between 0.7 and 0.9 s. The other room
was a reverberant room, with dimensions 7.67 m�6.35 m
�3.58 m high. The broadband RT60 of the reverberant room
was approximately 2.0 s; the RT60 in octave bands was be-
tween 2.0 and 2.5 s for the bands from 0.5 to 2 kHz and was
about 1.2 s in the 0.25- and 8-kHz bands. These rooms are,
as reported in Hartmann et al., 2005, rooms 10B and RR.

For all measurements, the KEMAR and loudspeaker
were made to “face” one another. Measurements of coher-
ence were made for four different distances between the
loudspeaker and KEMAR—0.5, 1.0, 3.0, and 5.0 m. For each
source distance, a measurement was made in ten different
places in each room. For each measurement, both KEMAR
and the loudspeaker were moved to different places in the
room while keeping the distance between them the same.
This yielded 19�10=190 waveform-envelope coherence

FIG. 1. Plots of envelope interaural coherence versus waveform interaural
coherence for simulated binaural signals using Gaussian noise pairs in six
different 1/3-octave bands. Each band contains 1001 coherence pairs, each
of which is a single data point. A best-fitting line to Eq. �6� is shown as a
thick solid line in each plot, though it may be obscured by the data points.
The value of the power parameter n, to two significant figures, is 2.1 for
each set of points in each panel.
pairs for each distance in each room.
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B. Results

Within bands, Eq. �6� successfully describes the rela-
tionship between waveform and envelope coherences,
though the value of the power parameter n within each band
varies slightly. Consider, for example, room 10B at a dis-
tance of 3.0 m. The values of n found by fitting the data to
Eq. �6� are as small as 1.9 in the 500-Hz band and as large as
2.2 in the 8000-Hz band. The variance in the best-fitting
value of n is likely due to the narrow range of waveform
coherences measured in individual bands. In some cases,
where the total range of waveform coherences was small, the
measured range of envelope coherences was also quite small.
The regression which led to the value of n in those cases may
be inaccurate. The average value of n across bands, plus and
minus one standard deviation, was n=2.1�0.1.

The relative insensitivity of Eq. �6� makes determining
an accurate value of n from a set of data with a small range
of waveform coherences �W unreliable. Instead, data can be
combined across all bands to get a picture of the waveform-
envelope coherence relationship for any given room and
source distance, as in Fig. 2. The resulting value of n given

FIG. 2. Combined envelope versus waveform-coherence data across all 1/3-
octave bands measured in rooms 10B and the reverberant room at each
source distance. Trend lines show the best fit of the data in each panel to Eq.
�6�. The value of the fitting parameter n is shown in the upper-left corner of
each panel. Because of the relative insensitivity of the curve to the exact
value of n, only standard deviations greater than �0.05 are given. The rms
error of the data to the best fit Erms is given on the scale of coherence
�0–1.0�. Therefore, in room 10B at 1.0 m, where the mean �E is 0.96 and the
rms error is 0.0024, the rms error is 0.25%.
in Fig. 2 should apply reasonably well within any particular
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band. It can be seen that the combined data at every distance
yield n=2.1 or 2.2. Standard deviations about these values
were in all cases less than �0.1. The collected coherences
are lower on average as distance from the source increases
and the direct-to-reverberant sound intensity ratio increases.
Low-frequency bands still tend to have high coherence, and
these form most of the points of high coherence in the cases
where the distance was 3.0 or 5.0 m.

V. CONCLUSIONS

The relationship between envelope and waveform inter-
aural coherences measured in real rooms agrees quite well
with computer simulations which calculate coherences from
Gaussian white noises, as computed in bands simulating au-
ditory filters. The bands were approximately 1/3-octave in
width. This close agreement suggests that the relationship
between waveform and envelope coherences may be insen-
sitive to the acoustic environment �reverberation time, source
distance, etc.�, though only two rooms and four distances
were tested in this experiment. Within 1/3-octave bands, Eq.
�6� provides a reliable relationship between waveform and
envelope coherences, which can be expected to generalize to
other rooms and distances. It may also be conjectured that
Eq. �6� would generalize to bands of arbitrary width. Deter-
mination of the value of n measured within any given band is
subject to error. By combining data across bands for a given
source distance, a reliable value of n can be found that actu-
ally applies to any particular band. Current observations sug-
gest that there may be little difference between rooms with
vastly different reverberation times.

The exact value of n �i.e., a value with greater precision
than mentioned here� is very sensitive to small variations in
the data. This is because the exact value of n does not have a
large impact on the shape of the curves, and so curves of
similar shape can have quite different values of n. This also
implies that the exact value of n may not be important to
describe the behavior of the relationship between envelope
and waveform coherences, but a “ballpark” estimate may
suffice in most cases. In this study, a ballpark estimate is
arrived at by rounding the relevant values of n to the nearest
tenth. In both the computer experiment and in the rooms, the
average value of n was 2.1. Thus, it is suggested that a reli-
able equation describing the relationship between waveform
coherence �W and envelope coherence �E in any room and
for any source distance is

�E =
�

4
+ 
1 −

�

4
��W

2.1. �7�

The envelope coherences arrived at using Eq. �7� are not
exact. Especially for situations in which the value of the
waveform coherence �W is small, the variance in the related
envelope coherence �E seems significant �see Figs. 1 and 2�.
It would be useful to quantify an expected error in envelope
coherence.

In order to quantify the expected deviation of envelope
coherences from Eq. �7�, waveform-coherence–envelope-
coherence pairs were combined across all frequencies into

one large set. Three such sets were constructed—one for
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each of the rooms and one for the computer simulation data.
The data in each set were binned by the value of their wave-
form coherence into bins of width 0.1, thus creating ten bins
across the range of waveform coherences. Within each bin,
two methods of measuring error were employed: �1� calcu-

lation of the mean absolute difference Ē between the mea-
sured envelope coherences and envelope coherences as pre-
dicted by Eq. �7� and �2� calculation of the absolute
difference from Eq. �7� for which 95% of the data deviate
less than that, i.e., the “95% bound.”

The absolute errors for the rooms turned out to be equal
to or slightly less than the errors in the simulated coherences
for both methods of error estimation. Thus, a conservative
estimate of the absolute error in Eq. �7� is given by the errors
measured in the computer simulation of coherences. The ab-
solute errors for both the mean and 95% bound method are
shown as a function of the waveform coherence �W in Fig. 3.
This figure shows third-order polynomial function fits to the

absolute errors. The mean absolute error Ē can then be de-
scribed as a function of the waveform coherence by

Ē = 0.011 + 0.0083�W − 0.031�W
2 + 0.013�W

3. �8�

The 95% bound is approximately three times as large as the
mean absolute error and reaches an upper limit less than
0.04. It is unlikely that listeners could discriminate between
envelope coherences that are different by this amount. A user
of Eq. �7� may expect the difference between envelope co-
herences calculated from Eq. �7� and the actual envelope

coherences to be approximately �Ē on average and may

expect envelope coherences to deviate no more than �3Ē
from Eq. �7�. It should be noted that Eq. �7� works quite
well, even for cases where the waveform coherence is low.
At worst, the expected error is about �0.035.

It is interesting to wonder whether different waveforms
would yield different results. An obvious choice to test
would be speech signals. In a short study involving a mea-
surement procedure identical to that used in the room experi-
ment, male speech was used as a signal in place of broad-
band noise. The same distances between the speaker and

FIG. 3. The 95% bound curve �closed circles� gives the absolute error in
envelope coherence for which 95% of the simulated coherences deviate by
that amount or less from the coherence predicted by Eq. �7�. The mean curve

�open circles� gives the mean absolute error Ē relative to Eq. �7� for simu-
lated envelope coherences. Both curves are third-order polynomials fitted to
the absolute errors of the binned data.
KEMAR were used as in the above experiments, and mea-
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surements were made in both rooms, 10B and RR. Speech
signals do not yield good signal-to-noise ratios at very high
frequencies, so the analysis was limited to bands no higher
than 10 kHz. Though an in-depth error analysis was not per-
formed as it was for noise bands, it was found that n=2.1
works quite well to describe the relationship between wave-
form coherence and envelope coherence for these speech sig-
nals.
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