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It is shown that a complex tone can be •nalyzed into its harmonics by adding to it a series of N -- 1 
similar complex tones with uniformly spaced fundamental frequencies. The harmonics appear in 
a time-ordered sequence, and this is the basis of a computer music effect employed by composer 
Jean-Claude Risset. The mathematical derivation involves the summing of a geometric 
progression to form a slowly varying amplitude factor. The effect is directly analogous to the 
analysis of white light into its constituent colors by a diffraction grating with Nslits. The temporal 
ordering of the sequence does not depend upon the relative phases of the harmonics of the 
complex tone, nor upon the number of tones which is summed• nor is it sensitive to amplitude 
changes. The order can be changed by a progressive delay of any harmonic in the summed 
complex tones. Calculations are made to investigate the stability of the effect against randomness 
in the tones to explain why the effect does not normally appear in vocal or instrumental choruses. 

PACS numbers: 43.20.Wd, 43.75.Wx, 43.85.Kx 

INTRODUCTION 

At the 11th International Conference on Acoustics, 
composer Jean-Claude Risset • demonstrated a fascinating 
computer-generated sound. He created seven periodic com- 
plex tones which were identical except for a small shift in 
fundamental frequency. The first tone was unshifted, the 
second was shifted by &a, the third by 26a•, the fourth by 
3•a•, and so on. When the seven tones were added together 
the listener heard a sequence of the individual harmonics of 
the complex tone, as though a narrow-band filter had been 
moved haphazardly across the spectrum. 

The purpose of this report is to explain the effect math- 
ematically and tb show the correspondence between this 
acoustical effect and the optics of a diffraction grating. The 
conclusion is that the superposition of a complex tone with 
its frequency shifted versions has the effect of analyzing the 
complex tone into harmonics in the same way that a diffrac- 
tion grating analyzes white light into its constituent colors. 
The acoustical effect will therefore be called "the frequency- 
domain grating." 

I. THE ACOUSTICAL SIGNAL 

A periodic complex tone is represented as a sum of its 
harmonics, 

M 

c(t)= • a a cos[h•o,t+4n]. (1} 

There areM harmonics, with index h, amplitudean, angular 
frequency ha•, and phase •n- Frequency o• is the angular 
frequency of the fundamental component. Throughout this 
paper the term "tone" will refer to a single sum of harmonic 
components as in Eq. (1). 

The sum of N complex tones is the signal, 

x(t ) = t_• a•_ • a(1, h ) cos[ hcott + q•{l, n } ], (2) 
where the amplitude and phase of the h th harmonic of the 

I th tone (with fundamental component frequency (•t) are 
completely general. 

To create Risset's effect, the fundamental frequencies 
are chosen according to the rule 

r_,) z ---- r_,)• + (i -- 1)6•. (3) 

The shift 6a• for successive tones must be small; for example, 
8f= &o/2•r = 0.1 Hz. 

The object of the present mathematical development is 
simply to separate the signalx{t ) into harmonic components 
(rapidly varying) and amplitude factors A n which are slowly 
varying because &o is small, i.e., 

M 

x(t)= • An(t)cos[h•t +•n ], (4) 
h--I 

where • and •h are the average frequency and phase, aver- 
aged over the N tones. 

If the complex tones are identical, except for their fre- 
quencies, then amplitudes and phases are independent of l, 

a(l ,h ) = an (5) 
and 

4(l, h ) = 4h. (6) 

In that case, the separation is easy to do because the sum over 
the N tones is a geometric series. For any harmonic h the 
contribution to the sum in Eq. {2} is the real part of 

/v 

ah e•n E 
i•1 

The average phase angle •n is •n; the average funda- 
mental frequency for Eq. 14} is 

• = •o, + [(N-- I)/2]&0, (7) 

and the amplitude of the h th harmonic ofthe signal becomes 

A• = an [sin Ny(h )/sin y(h )], (8) 

where 

y(h ) = h 6a• t/2. (9) 
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In the power spectrum, the power of the h th harmonic is 
the square of the amplitude, 

Ph = a• [sin 2 Ny(h )/sin • ),(h )]. (10) 
The amplitude ,4h is a slowly varying function of time 

because t is multiplied by the small shift &o. A peak occurs in 
the amplitude of the h th harmonic at times when both the 
numerator and the denominator of Eq. (8) are zero, i.e., when 
•(h ) is an integral multiple of •r, viz., 

h •o t = 2•rm, (11) 

where rn is an integer. Peaks for different harmonics occur 
at different times, and this is the origin of Risset's effect. 

II. AN ACOUSTICAL EXAMPLE 

We generated a digital signal consisting ofN = 7 identi- 
cal tones, each with M = 7 harmonics, with a• = 1, and all 
in cosine phase, i.e., •b(h I= 0. The file was 8000 samples 
long, successive fundamentals differed by one cycle in the 
file, and there were 501 cycles of the average fundamental. 
Therefore, the signal at time point i was 

7 7 2•rh 
X(t•= • • cos•(497+1)i (0<i<oo). (12) 

The seventh harmonic of the highest fundamental was 
7(504) = 3528, which is less than 8000/2 so that the sam- 
pling theorem was satisfied. 

Because the values of h and I are integers 
X(i + 8000) = X(t]; successive playings of the file lead to a 
continuous sound with no transients. Because the values ofh 

and I are successioe integers there is no periodicity in the 
sound shorter than the file itself. 

If the time between successive samples is At then the 
total file duration is 8000 At, the average fundamental fre- 
quency is •= 501/(8000At ), and the frequency spacing is 
Bf= l/(8000At). If the time between successive samples is 
1250 ps then the file is 10 s long, the average fundamental 
frequency is 50.1 Hz, and the frequency spacing is 0.1 Hz. 

The amplitude, from F-xis. (8) and (9}, for the h th har- 
monic at time point i, is 

.4• (t• = sin {7•rhi/8000)/sin (•rhi/8000). (13) 

Figure 1 shows the amplitudes as a function of time, comput- 
ed from Eq. (13) for the entire file. Figure 2 shows how the 
file sounds. There is a time inversion symmetry about the 
center of the file X(i) = X(8000 -- t]. Therefore, the melody 
of harmonics consists of a statement and its retrograde for 
each playing of the file. Notes are given in Fig. 2 for the first 
4000 time points; the serpentine arrow of time shows the 

ß retrograde nature and the continuity. 

IlL THE OPTICAL DIFFRACTION GRATING 

Fraunhofer diffraction by a grating of N slits, uniformly 
separated by distance d, is described in all texts on optics, 
e.g., Jenkins and White. • The light to be analyzed is passed 
through the grating and projected onto a screen. Light waves 
which come from different slits travel paths of different 
lengths. Their interference leads to the diffraction pattern on 
the screen with intensity maxima and minima. The positions 
of maxima are different for different frequencies of light, and 

N 
765 47 57 75 74 567 

0 TIME POINT i 8000 

FIG. 1. Amplitude as a function of time point i, from Eq. (13), for each of , 
seven harmonics as labeled. The first harmonic (fundamental) is plotted 
with a heavy line between halves of a "principal maximum." For every oth- 
er harmonic the amplitude curve between successive "principal maxima" is 
identical to the curve for the first. 

this is how the grating serves as a frequency analyzer. 
For light normally incident on the grating, positions on 

the screen are defined by angle 0, the angle with respect to 
the direction of the incident light beam. The intensity on the 
screen is calculated, as above, by summing a geometric se- 
ries. For light with frequencyf the intensity is given by 

I = .4 2•)(sin2 Ny/sin 2 y), (14) 
where.4 (f) is the amplitude of the incident light of frequency 
fand 

'-() 
FIG. 2. Peaks in Fig. 1 replottcd in musical notation showing the ordered 
sequence of seven harmonics analyzed by summing seven complex tones. 
Thc fundamental is plotted as C3 for convenience only. 

1422 J. Acoust. Soc. Am., Vol. 78, No. 4, October 1985 W.M. Hartmann: The frequency-domain grating 1422 



r = ½rf/c) d sin O, (15) 

where c is the speed of light. 
Equation (14) is identical to Eq. (10). The acoustical and 

optical effects are analogous, as given in Table I. The table of 
analogous quantities (Table I) leads to a one-to-one corre- 
spondence between the rules for the acoustical effect and 
standard rules for the diffraction grating, e.g.: 

(1) There are N- 1 intensity zeros between successive 
principal maxima. 

(2) There are N - 2 secondary maxima between succes- 
sive principal maxima. 

(3) The half-width of principal maxima A0 is given by 

A sin(0 )--(At? )cos 0 = c/(Nfd ). (16) 

Analogous to the durations of harmonic peaks; 

At = 2rr/Nh &o. (17) 

(4) The spacing of principal maxima is 

A sin{0 } = dc/f (18) 

Analogous to the spacing from Eq. { 11), 

At = 2•r/h &o. (19} 

(5} At any point where there is a principal maximum for 
light of frequency f there is also a principal maximum (of 
higher order) for harmonics off Equation (11) shows that 
this is true in the acoustical case, however an exception to the 
rule will be shown in Sec. IV C. 

Because the frequency range of visible light is narrow, 
spanning less than an octave, there is no coincidence of har- 
monies involving the first order {m = 1 ). For higher orders, 
harmonics of a "missing fundamental" lead to the trouble- 
some "overlapping of orders." 

IV. ACOUSTICAL VARIATIONS 

A. Amplitudes, phases, and spectral composition of 
the complex tone 

In applying the "grating" to the analysis of a complex 
tone, there are no restrictions on the amplitudes and phases 
of the harmonics of the tone. So long as all the complex tones 
to be summed have the same values era n and •n, the grating 
analysis occurs. The amplitude of each harmonic peak in the 
analysis is proportional to an. The phase •n similarly ap- 
pears as a simple constant in Eq. (4}. The order of the se- 
quence of harmonics, shown in Figs. 1 and 2, does not de- 
pend upon the amplitudes or phases of the harmonics. That 
sequence was calculated for the simple case, an = 1 and 
•n = 0, but the order would have been the same for any 
other choice of the seven values ofah and the seven values of 

TABLE I. The table of analogous quantities. 

Acoustical Optical 

number of tones N number of slits N 

titnc t dispersion sin 0 
frequency shift h 8co 2rrf d /c 
harmonic peaks principal maxima 
t = 0 central [mage 
harmonic occurrence counter = m order number 

•n. The order of the sequence also does not depend upon N, 
the number of complex tones which are summed. 

The component frequencies of the complex tone are 
also unrestricted. For example, the tone may be inharmonic. 
It may even have a dense spectrum, as for noise, in which 
case the grating analysis produces a whooshing sound, as 
though a narrow filter were moved about within the noise 
spectrum. 

In the above example and its variations, the N complex 
tones are identical except for the frequency shift. Therefore, 
the sum over l in Eq. (2) could be done because the sum forms 
a geometric series. There are two conditions, B and C below, 
which produce a geometric series even though the complex 
tones which are summed are not identical. 

B. Amplitudes of the complex tones 

A geometric series results if the amplitudes of the corre- 
sponding components of the tones are geometrically related: 

a(/,h ) = a{1, h )rlh t- u, (20a) 
where rn is the common amplitude ratio for the h th harmon- 
ic. A special case of this one in which the tones are identical 
except for attentuation. Then rn is independent ofh. Succes- 
sive tones are attenuated by a common factor, for example, 
compared to the first tone, the second tone might be atten- 
tuated by 3 dB, the third by 6 dB, the fourth by 9 dB, etc. The 
main effect of such attentuation is to reduce the size of the 

harmonic peaks relative to the background. It does not lead 
to a change in the temporal order of the peaks. 

C. Phases of the complex tones 

There is only one form of manipulation for the relatioe 
phases of the components of the tones which leads to a sum- 
mable series, and that is 

•(l, h ) = •(1, h ) + (l -- 1)&bn, (20b) 

a phase shift linear with the ordinal number of the tone. The 
constant increment A•n may be different for different har- 
monics. This form of phase shift is actually a time shift for 
each harmonic given by tStn = A•n/h&o. The average phase 
angle [eft Eq. (4)] is 

•n = •bn + [(N-- l)/2]a•n, (21) 
and the amplitude •4n is given by Eq. (8) with y given by 

•h ) = (h&ot + Aff n )/2 (22) 
or 

•(h ) = h&o(t + t•t h )/2. (23) 
In this case, it is possible to reorder the harmonic peaks in 
time. For example, it is possible to violate rule 5 from the 
optical analogy. 

V. TWO TONE•--THE DOUBLE SLIT 

The case of two complex tones (1 and 2) for which 
a{1, h ) = a{2 ,h }=ah is a unique case in that any choice of 
relative phase angles for any harmonic satisfies Eq. (20b}, 
because Eq. (20b) includes two free parameters. The ampli- 
tude of the h th harmonic is given by 
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.4, = 2a, cos(• &o t + a•h)/2. (24} 
The situation is analogous to the pedagogical optical exam- 
ple of two slits. 

Warren and his colleagues 3 have listened. to the sum of 
two complex tones. They reported two experiments, one in 
which the two tones were identical (A•, = 0 for all h ) and 
another in which the two tones were different (A•, •0). 

For the first experiment a glissando w•s heard when the 
complex tone contained harmonics above the seventh or 
eighth harmonic. When the higher harmonics were removed 
the glassando vanished, leaving multiple beats. This result 
may be understood q,•litatively by examining the sequence 
of amplitude peaks, calculated from Eq. (24) with A•h = 0. 
The sequence begins with a peak at the highest harmonic, M. 
The next peak is harmonic M -- 1, and so on until the orderly 
progression of decreasing harmonic numbers is interrupted, 
just after the peak for harmonic M/2 + 1 (or M/2 + « for M 
odd), by the reappearance of a peak for harmonic M. The 
sequence ends with a progression in the reverse order (rising 
glissando}. The orderly progression includes M/2 -- I har- 
monics {M/2 -- « for 34'odd). For M less than 7 there are less 
than three peaks in the progression and it is not surprising 
that one does not hear a glissando experimentally. 

For the second experiment, the sum of different tones, 
Warren and his colleagues reported a "complex periodic pat- 
tern" when harmonics above the eighth harmonic were pres- 
ent. The change from a glissando to a pattern could be 
caused by two effects. First, the orderly sequence of harmon- 
ic peaks is broken up by the phase differences A•n , which 
may be different for each harmonic. Second, low-order har- 
monic peaks, which always coincide with peaks for higher 
harmonics when A•n = 0, may now appear singly because of 
the phase differences A•. 

For both experiments, one expects the effects to be weak 
because the peaks are very broad when only two tones are 
added. From Eq. (17) for the durations of the harmonic 
peaks, for N = 2, 

At = rr/h&o. (25) 

The peaks are least broad for higher values of h so that the 
higher harmonics should be responsible for most of the ef- 
fects observed. 

Vl. SENSITIVITY OF THE EFFECT TO IMPERFECT 
CONDITIONS 

The analysis of sound by the frequency-domain grating 
occurs because the complex tones are slightly mistuned. 
Such mistuning of complex sounds always occurs in vocal or 
instrumental choruses, and yet the grating analysis is not 
normally heard. The conditions required for the grating 
analysis are not precisely fulfilled in choruses because of the 
following deviations: (1} The amplitudes of the harmonies 
are not exactly the same in each of the tones of the chorus; 
Eq. (5} does not hold. (2} The phases of the harmonics are not 
exactly the same in each of the tones of the chorus; Eq. (6} 
does not hold. (3} The mistuning of the fundamental frequen- 
cy does not precisely obey Eq. (3}. We consider these effects 
in turn. 

A. Amplitude variation among the tones 

Because amplitude is a non-negative quantity, a sum 
over all the tones in the chorus must lead to a finite average 
value. For any given harmonic h, the power is then 

Pn = •. [ sin2 N•h )/sin2 y(h ) ] + Ar ( a• • •, ), {26} 
of. Eq. (10}, for comparison. The first term includes the grat- 
ing analysis; the second is a constant level. If, for example, 
the amplitudes of the tone to be summed are drawn from a 
rectangular distribution, O•an • 1, the average gives • = •[ 
and the variance is an • -- • = •. The ratio of peaks to con- 
stant background level is 3N. Therefore, one expects that the 
grating analysis can still be heard for sufficiently large N, 
e.g., N = 7. A random choice of amplitudes leads to a con- 
stant drone, but the melody of the analyzed harmonics, with 
its temporal order unchanged, should still be prominent on 
top of the drone. This prediction has been verified by a listen- 
ing experiment using one loudspeaker as a source. We con- 
elude that the fact that the amplitudes of the harmonics are 
different in the different tones in the chorus is probably not 
responsible for the fact that the grating analysis is not heard 
in a chorus. 

B. Phase variations among the tones 

The frequency-domain grating analyzes complex tones 
because the sum of N complex tones produces a diffraction 
pattern With a peak, a principal maximum, which is consid- 
erably larger than the secondary maxima. In this section we 
study the change in the diffraction pattern when the phase 
angle is a random variable among the tones which are 
summed, as would occur in a chorus. Our study is a numeri- 
cal one in which the diffraction pattern is calculated for dif- 
ferent random configurations of phase angles and compared 
with the pattern which produces the grating effect, in which 
there is no variation in phase angles among the tones. It is 
only neeessay to make the comparison for a single harmon- 
ic, for the following reason. 

If there is no phase variation among the tones, then, for a 
given number of tones in the sum, there is a particular dif- 
fraction pattern in time for the first harmonic. The heavy 
line in Fig. 1 shows the particular pattern for Ar---- 7 tones. 
The diffraction pattern for the second harmonic is identical 
to the pattern for the first, but it happens twice as fast. In 
general, within the overall period of the analysis pattern for 
the h th harmonic, the particular pattern occurs h times. 
Therefore, in order to study the change in the overall pattern 
caused by random variations in the phases of the tones, it is 
sufficient to study only a single harmonic, the first. The na- 
ture of the change will be stochastically identical for all other 
harmonics. 

Therefore, we studied the squared envelope of the func- 
tion 

y = cos(,t + 
I=1 

for •o• chosen according to Eq. (3) and random •. This cor- 
responds to the pattern for any harmonic when the terms to 
be summed have identical amplitudes but random phases for 
that harmonic. For each random configuration we found the 
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TABLE II. Statistics for the ratio of the power of peak number N r to the power of the highest peak for seven tones with random phases. Columns 3-5 show the 
mean over 512 configurations and the mean •: a standard deviation. The last column shows the percentage of configurations which have at least Np peaks. 
For comparison, column Ro shows the ratio of secondary maxima to the principal maximum for no phase difference among the tone•. 

Random 

N r Re (dB) • {dB) • - o(dB) • + o•dB) % configurations 
I 0 0 0 0 I00 
2 - 13 --2 - 4 0 100 
3 - 13 - 3 - 6 -• 2 100 
4 -16 -5 - 9 -3 99 
5 - 16 - 8 - 14 -- 5 75 
6 - 17 -9 - 18 -6 25 

peaks of the pattern and put them in order of decreasing 
height, labeled by integer Np. We compared the heights of all 
the peaks with the height of the largest peak because we 
reasoned that if all the smaller peaks were considerably 
smaller than the largest peak, then the grating effect would 
be preserved in that configuration. 

Quantity R is defined as the ratio of a smaller peak 
height to the largest peak height for a particular configura- 
tion. Table II shows the results of the numerical study for 
N = 7 tones. Column RG compares the levels of the secon- 
dary maxima to the principal maximum for the case of the 
perfect grating, where there is no phase variation. The other 
columns give information about the statistical distribution 
of R in the random case, its mean value, and its mean minus 
and plus a standard deviation. The last column shows the 
percentage of all the configurations for which N•, peaks ap- 
peared in the squared envelope for the random case. 

The table shows that the highest peak is rarely apprecia- 
bly taller than several other peaks in the configuration, 
which suggests that random phases will considerably disrupt 
the grating effect. In another numerical study we examined 
5300 configurations and did not find one for which the ratio 
R for the second peak was as small as the ratio for the largest 
secondary maximum in the case of a perfect grating. 

As the number of tones in the sum Nincreases, the aver- 
age R for a particular peak increases slightly. By contrast 
there is a slight decrease in the ratio era particular secondary 
maximum to the principal maximum for the perfect grating. 
[As Nincreases, from the smallest value for which a particu- 
lar secondary maximum first appears, to infinity, the ratio 
decreases by 20 log (2/•r) = -- 3.9 dB.] Further, as N in- 
creases, the variance of the distribution of R decreases for the 
random case, so that configurations with small values of R 
become more and more improbable. 

We conclude that for N = 7 the grating effect is badly 

disrupted by random phase angles among the tones. For 
larger N the grating effect is even more seriously disrupted 
by randomization. For small values of N, e.g., N = 3, there is 
increased likelihood that a phase configuration chosen at 
random will produce a diffraction pattern with smaller 
peaks which are about as small as the secondary maxima of 
the perfect grating. But for small N, the large width of the 
peaks tends to destroy the grating effect. It should be noted 
'that even if the sources are phase locked, the fact that they 
are at different locations' in a room will randomize their 

phases and tend to destroy the grating effect. 

C. Nonlinear variation In fundamental frequency among 
the tones 

In choruses, the linear variation in fundamental fre- 
quency [Eq. (3)] will not generally occur. The actual vari- 
ation can be described as a best-fit linear variation plus de- 
viations from linearity. The deviations then appear as 
random phase angles among the tones, as discussed above, 
but with a slow temporal variation. Thus the grating effect, 
already disrupted by random phases, is further disrupted by 
the variation of the pattern in time. 
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