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This article concerns the generation of waveforms by a digital oscillator in which sampled data
in a memory buffer are recycled. The buffer contains a fixed waveform and the output sample
rate is also fixed. Despite these constraints, the oscillator is capable of arbitrarily high
frequency resolution if the technique of fractional addressing is used. However, fractional
addressing introduces distortion. This article gives a theory of fractional addressing,
resembling the theory of diffraction in crystal lattices with a basis. The theory shows how the
spectrum of the distortion components can be calculated and how the distortion can be
minimized. Attention is called to numerous symmetries in the distortion spectrum. These
symmetries are especially interesting if the purpose of the system is to make use of the
distortion components to create inharmonic signals. Of particular importance is the yp
symmetry theorem, which makes it possible to derive simple formulas for the level of the
largest distortion component and for the total distortion power.

PACS numbers: 43.85.Jq, 43.85.Ta, 43.75.Wx

INTRODUCTION

This article is concerned with the generation of wave-
forms by the continuous recycling of sampled data. To intro-
duce the terminology, the article begins with several exam-
ples.

Suppose that a sine signal with frequency /= 1024 Hz is
recorded into a digital buffer, having L = 32 768 memory
locations, at a sample rate of R = 32 768 samples per second.
Then, to produce an output sine tone with frequency
/' = 1024 Hz, one can convert the digital representation of
the signal to analog form by a digital-to-analog converter,
which converts successive samples to an analog voltage at a
rate R’ = 32 768 samples per second. In order to convert
successive samples, the system has an address register that
points to the particular memory location that is converted to
analog form at a given instant. The address register will be
able to access any of the memory locations (numbered 0-
32 767) ifitis 15 bits long. After each sample conversion, the
address register is incremented by A = 1 to point to the next
sample in the buffer. After sample number L — 1 = 32 767
has been converted, the address register overflows and
points again to sample 0. In this way, the buffer is recycled
endlessly. The system is thus a digital oscillator.

Suppose, now, that after each conversion the address
register is incremented by A = 2. Because the output sam-
pling rate R’ is the same as the input sampling rate R, the
entire buffer will be reproduced in half the time taken to
record it. The output sine tone will have a frequency

f' = 2048, twice that of the input frequency of f. Thus, by
changing the address increment, one can control the fre-
quency of the output signal. In general, the relation between
the output frequency and the input frequency is given by

S =f(R'/R)A. (1)

This technique holds good so long as the sampling
theorem is satisfied on output, namely, /' < R '/2. Because
the number of cycles of the sine signal in the buffer is equal to
C = fL /R, the output frequency can be written as
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S '=(C/L)R'A. (2)

In order to satisfy the sampling theorem on input, there must
be at least two samples per input cycle, i.e., C<L /2. For the
example at hand, C = 1024 cycles and the system can create
output frequencies of 1024,2048,...,16 384 Hz, with incre-
ment A = 1,2,...,16. In other words, the frequency resolu-
tionofsuchanoscillatorisAf = (C /L)R ',namely, 1024 Hz.

The frequency resolution can be greatly improved by
recording only 1 cycle (C = 1) in the buffer. Then, to gener-
ate a 1024-Hz sine tone, one sets the address increment A
equal to 1024. The frequency resolution is, then, 1 Hz.

To make further improvements in the frequency resolu-
tion is more difficult. The value of C cannot be reduced be-
low 1; there must be at least 1 cycle of the input waveform in
the buffer or else the output will be distorted by a waveform
discontinuity between the end of the bufferat / = L — 1 and
the start of the buffer at / = 0.

Improved resolution can be obtained by decreasing the
output sampling rate R ', but then the maximum frequency of
the oscillator is correspondingly reduced. Alternatively, one
could increase the length of the buffer by adding more hard-
ware memory. This increases the cost of the oscillator and,
perhaps more important, increases the time required to load
the buffer.

Fortunately, there is a better way to improve the fre-
quency resolution, namely, by fractional addressing. The
technique was introduced by Mathews (1969) in the con-
struction of unit oscillators for a music synthesis program.
In the fractional addressing technique, the increment A is
not an integer; instead, it includes an integer part / and a
fractional part /M, where y and M are integers, i.e.,

A=1T+y/M. (3)

It is always assumed that /M is a reduced fraction, i.e., that
¥ <M and y and M have no factors in common.

An efficient way to implement fractional addressing is
shown in Fig. 1. There is a 24-bit address register and a 24-bit
increment register. After each successive sample, the ad-
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Buffer Address ( 0 to L-1 = 32767)

15 14 13 ... 2 1]
Address Register f
[4 23 22 .. .11 10 8 &8 7 ... 2 1]

+

Address Increment (A)
l242322..‘1110987...21
16384 8192 4096 ... 2 1 1/2 1/4 1/8 ... 1/256 1/512

Bit pattern
o o o0 ... 0 ¢ ¢ ¢ 0 ... 0 O

msb Isb

FIG. 1. Registers for addressing a 32K buffer with a fractional part that
may be as small as 1/512. The bit pattern in the increment register (bottom
line) represents the increment A = 1.75.

dress register is incremented by the increment register. Be-
cause only the most significant 15 bits [log,(L) ] of the ad-
dress register are used to address the buffer locations, the
least significant bits of the address register are fractional ad-
dresses. There are N = 24 — 15 =9 such fractional bits.
The smallest nonzero fractional partis 2 ~° = 1/512; the lar-
gest possible fractional part is 511/512.

The frequency resolution is determined by the number
of bits in the fraction N,. It is given by

Af= (C/L)R"2™ ™. (4)

If, for example, there is 1 cycle in a 32 768-sample buffer and
Ny equals 9, then the frequency resolution, in terms of the
output sample rate R ', is 60 parts per billion. If the output
sample rate is 50 000 samples/s, then Af'= 0.003 Hz. The
precision of 60 parts per billion can be compared to the in-
herent stability of crystal oscillators used to generate the
sampling clock signal, about 100 parts per billion for a high-
stability oven-controlled oscillator.

In sum, the fractional addressing technique leads to ex-
cellent frequency resolution while maintaining a maximum
allowed frequency equal to half the output sampling rate. It
does not require a very long buffer; in fact, for many pur-
poses, the length of the buffer can be considerably shorter
than the 32K used in our example.

The remainder of this article is a mathematical analysis
of fractional addressing. Such an analysis is necessary be-
cause it is not evident a priori that the technique should
work. It will be shown below that fractional addressing, in
which the denominator of the fractional part is M, actually
has the effect of reducing the sample rate by a factor of M.
Therefore, one might expect that fractional addressing
should lead to gross distortion and, in some cases, it does.
The theory derives formulas that can be used to calculate the
distortion and shows how it is possible to construct digital
oscillators, using fractional addressing, that reduce the dis-
tortion to acceptable levels.

The theory is quite similar to the theory of crystallogra-
phy, the study of crystal structure by means of x ray or neu-
tron diffraction (Kittel, 1966). The correspondence is so
close that it is possible to refer to elements of the digital
theory using the terms of crystallography. This we have done
below without further apology.
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I. THE SPECTRUM OF A SAMPLED SIGNAL

Our analysis is entirely concerned with the spectrum of
the output of a digital oscillator because the spectrum most
clearly reveals the nature of the distortion. The analysis is
primarily directed to the creation of sine tones. The distor-
tion products that occur in the generation of complex wave-
forms can be computed by using the sine tone results and the
law of superposition.

A temporal view of the sampling situation is given in
Fig. 2, which serves to define some of the terms. The figure
shows the particular case when the increment is A = 1.75,
but the definitions of the terms are completely general.

A. The general formalism

As shown in Fig. 2, the buffer contains input samples v,.
The output of the oscillator, as a function of time, is given by
the convolution of a sequence of input samples with a sam-
ple-hold function /. Depending upon the width of the sam-
ple-hold function, the output v'(#) may be a series of delta
functions, a bar graph, or a series of steps. The output is

©

Z 5(t, —m7 V- (5)

m=20

V(1) = dt,h(t —1t,))

Here, 7' is the time interval between output samples, labeled
m. It is the reciprocal of the output sample rate R '. The
symbol v,,,,, stands for the particular input sample /, which
is converted on output sample m. Because v'(¢) is a convolu-
tion in time, its Fourier transform is a product, where the
Fourier transform of 4 (z) is a factor; i.e.,

Vi) =Hw) 3 e “ v,

m=0

Function H(w') is called the “form factor.” Because /(¢)

(6)

Time w(t)‘

Waveform l
V=WS T ’
Input . .
Samples ; .
Input ce
Index 1 = 1 2 3 4 5 6 7 8 910
Output
Index m = 0 1 3 M=4 5 6

I(m =0 1 5 N= 8 10
unit
celln = |~o0 o i
0utput/4= 0 1 2 3 0o 1 2
Input

)74 =0 1 3 5 0o 1 3

Address

mA= 0 1.75 3.50 5.25 7 8.75 10.5

FIG. 2. Cartoon showing the input of a sampled cosine and the output with
an address increment of A = 1.75. The symbols w, v, s, [, m, [(m), n, i, A,
A,, M, and A correspond to those in the equations of the text.

"
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describes time-dependent details on a scale that is as short or
shorter than the sample time, function H(w") depends slow-
ly upon the spectral angular frequency o’ ( = 27f"). For the
rectangular sample-hold function of Fig. 3, the form factor is

H(o') ={[sin(w'gr'/2)1/['gr' /2] e 72 (T)

The form factor is a rather benign low-pass filter. The worst

case occurs when the duty factor g has its maximum value

(g = 1) and ' has its maximum value, 27R '/2. Then, com-

pared to the low-frequency limit of H, the attenuation is

sin(7/2)
(7/2)

and the worst case phase shift is 90 deg.

The input samples v, are obtained by sampling an input
waveform w(¢). It is convenient to represent v, by means of
an inverse Fourier transform,

v, = L(”

"Toar ) -

20 log|H | = 20 log — 3.9 dB, (8)

do ¢“"W(w). (9)

Then, substituting Eq. (9) into Eq. (6), we find the output
spectrum V' in terms of the input spectrum Wj i.e.,

V' (o) =H(w'") J_w do S(0'\w)W(w), (10)

1/g7t
/9 (a)
1/T
h(t)
gt 7 time
1.0
g=0
(b)
0.8 + <+
~ ost g=0.5 1
T \
0.4 + +
- g:i
0.2 + =1
0.0 ) .
0.0 1.0 2.0 3.0

Output frequency/Sample rate

FIG. 3. (a) The sample-hold function /4 has unit area. It is nonzero for a
fraction g of the interval 7’ between output samples. (b) The Fourier trans-
form of 4 is the form factor H. Its absolute value is showr r three different
values of g: 0, 1, and 1.
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where
I &
S(o',w) =— e'l
Y mgo

wtl(m) 7(,;’7'171]' (11)

Function S comprehends the case of ordinary digital
recording and reproduction, where input and output sample
rates are the same (7 = 7'), and successive input samples are
converted on output, /(m) = m. In that case, function .S be-
comes

S(w',w) =S —w) = i 6(w —w —2mpR).

o
(12)

The output spectrum V' is the convolution of the input spec-
trum with the sampling function S, a series of delta functions
at multiples of the sample rate. Peaks in the input spectrum
appear as satellites to the left and right of the peaks of S.
When the output is low-pass filtered with a cutoff at half the
sample rate, only the satellites of the p = 0 term survive the
filtering, and the output spectrum is equal to the input spec-
trum.

Equation (12) shows that, in ordinary recording and
reproduction, function S(w’,w) is a function of the differ-
ence ® — w. This is characteristic of a “local” sampling op-
erator. If input and output sample rates are different, then
S(w',w) is a function of (o’ — 7w/7'), a simple scaling, and
the sampling operator can again be considered to be “local.”
A similar scaling applies if the increment A is an integer.
Then /(m) = mA and S is simply a function of (o' — A7/
7'). But, in the general case of fractional addressing, func-
tion S(w',w) is not only a function of ®" — w; the sampling
operator is “nonlocal.” A scheme for dealing with this non-
local operator is described next.

B. The unit cell

The address of input sample /, which is converted on
output sample m, is given by the function /(m). This is not a
trivial function, as is shown in Fig. 2 for the special case of
A = 1.75. Function /(m) is the integer part of the number
mA. For successive integer values of m, starting at zero, the
values of / are equal to 0,1,3,5,7,8,10,... .

But, although the pattern of / values may appear to be
irregular, the pattern must repeat itself after precisely M out-
put samples (recall that /M is a reduced fraction). The
spacing between successive / values for a fractional part of 2
repeats after four output samples. The basic repetitive pat-
tern is called a “‘unit cell.” Each output sample number m
can be represented by a cell number # and a within-cell num-
ber 1, which is equal to m modulo M; i.e.,

0<n < o0,
O<u<M — 1.
Each input sample number can be represented similarly,
I(m) =nA+ A (14)

where A is the number of input samples in the unit cell,

m=nM+pu (13)

"

A =MI+y=MA. (15)

Thus 4, is given by the set of allowed / values modulo A.
The representation of Eqgs. (13) and (14) allows one to
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write the sum in Eq. (11) as a product of a periodic part and
a sum over the unit cell, containing only M terms; i.e.,

S((l)l,w) - ei(wT/\—(o"r'M)n
T n=0
1 Ml i(wTA, — @'T'p)
X — z e . (16)
n=0

The first sum is a series of delta functions; the second sum is
the “structure factor” o; i.e.,

S(o',w) = i S(0'TM — otA — 2mp)o(0',w),
T (17)
where
o0 0) = i Mi ! TR @ T (18)
M

=0
The factor 1/M in Eq. (16) renormalizes the sum on #

to correspond to the number of time points in Eq. (11).
Because the basic periodic unit in time has been expand-
ed by a factor of M, the sample rate is effectively divided by
M. The series of delta functions in Eq. (17), and the output
spectrum, has peaks that are satellites of integer multiples of
R '/M.Thisis particularly evident if input and output sample

rates are the same, i.e., 7=7" = 1/R".
Then,
00 ) R ’ ;
sirp= 3 o(r—m-pecrip. a9

p= —
Equation (19) has converted angular frequency to frequen-
cy in hertz, and has used the fact that A = A/M. The output
spectrum consists of satellites, formed by peaks of the input
spectrum, around low-frequency values pR '/M. This effect
is shown in Fig. 4, which shows the delta functions in the
first zone of the spectrum, from 0 to R '. In Fig. 4(a), the
address increment A has no fractional part (M = 1) and
only the input sine component, at frequency f, passes the
low-pass filter with cutoff at R '/2. In Fig. 4(b) , the address
increment A equals 1.75 (M = 4) and the output spectrum
contains satellites of R '/4. Three distortion components are
passed by the low-pass filter. It is clear that if the fractionally
addressed digital oscillator is to work without gross distor-
tion, the low-frequency satellites must be wiped out by the
structure factor o.

C. The structure factor

The structure factor is given by Eq. (18). It is generally
a function of w’ and w, but, because of the delta function in
Eq. (17), @'7’ can be replaced by

o' = wTA + 27p/M. (20)
Further, if the input waveform w(¢) is a cosine with angular
frequency w, ( = 27f, ), then

W(w) =760 —w,) +6(w+ )] (21)
and, by Eq. (10), values of @ can be limited to + w,. It is

also convenient to write w7 in terms of the number of cycles
per buffer, o, 7 = 27C /L. We then have
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FIG. 4. The series of delta functions from Eq. (19) is the output spectrum if
the structure factor o( f”, f) equals 1. For both (a) and (b), the input and
output sample rates are R = R’ = 32K, and there are C = 1K cycles re-
corded in a buffer of length L = 32K. The figures show the first zone from 0
to 32K. All other zones are identical to the first. Dashed lines show the
passband of a low-pass filter set at R '/2 = 16K. In Fig. 4(a), the address
increment is A = 1.0. In Fig. 4(b), the address increment is A = 1.75. (Fre-
quency is expressed in units of 1K = 1024 Hz.)

o=o0(p, +)
1 ; C

Then, for an input cosine, the output spectrum becomes

Vi) = B
x 3 ar-2 (s

P
where both ( + ) and ( — ) signs must be used.

Equation (22) can be simplified by noting that 4, is the
integer part of Au. Then the difference A,u A, is the frac-
tional part of Ay or

Au — A, = (1/M) () urs (24)

where we use the notation (x),, to indicate the value of x
modulo M. The final expression for o then becomes

(22)

%)}a(p, ), (23)

og=o0(yp, )
=— 2 ex p[ ‘(pui E(VMM)]. (25)
n=0 M L
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Explicit dependencies are: ¥, the numerator of the fractional
part; p, the satellite index; and ( + ) or ( — ) for satellites to
the right or left of frequency (R '/M)p.

D. Special case y=1

Because of the term in (yu),,, it is not easy to evaluate
the sum in Eq. (25) in closed form. However, a closed-form
solution can be obtained in the special case that y = 1, i.e.,
when the numerator of the fractional part of A equals 1.
Then (yu) ,, can simply be replaced by uz. The sum becomes
a geometric series, with the result that

1 sin(7C /L)

1p, +)| = '
lo(1,p, +)| M |sin[ (7/M)(C/L + p)]|

(26)

E. Symmetries of the structure factor

The general expression for the structure factor in Eq.
(25) exhibits symmetries as follows.
(1) Periodic symmetry:

o(yp+M,+)=0(yp, +). (27)

This symmetry occurs because it is possible to add any multi-
ple of M to p and leave the sum in Eq. (25) invariant. This
periodicity is the same as the periodicity that occurs when
there is no fractional part in the address increment.

(2) Inversion symmetry:

10(7/’—P,i)|=|0(7/,Ps$)| (28)

This holds because changing the sign of all the exponents in
Eq. (25) leaves the absolute value of the sum unchanged.
(3) Reflection symmetry:

lo(y,M —p, +)| = |o(y.p, F)I- (29)
This symmetry is easily proved from symmetries (1) and
(2) above. It means that the spectrum in any zone
(0<p < M) is symmetrical about the center of the zone at
p=M/2.

(4) Zone-center invariance A:

If M is even, then

oly,(M/2), + 1 =oly,(M/2),+] for all y,y.

(30)

This invariance says that the value of the structure factor,
when p is at the center of the zone, is independent of the
numerator y. To prove this symmetry, we first note that

M ) 1 + (C/L) ()
ay,—,+ | = — — 1)*e M,
(7 5 ot M;( )

The next step requires theorem A from Appendix A.
Theorem A says that for  and M relatively prime, the set of
integers { (yu) ,, } isindependent of y. Therefore, Eq. (31) is
of the form

M 1
ay,—,+ | = — —1 llzei(C/L)u.’
(+3%) =2z

where, for each value of u, the value of 1, is chosen such
that

(31)

(32)

(Vo) v = s (33)

If M is even, as usual in fractional addressing, then ¥ must be
odd. Then Eq. (33) shows that, for any y, , is even (odd) if
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W, 1s even (odd). But the terms in Eq. (32) depend upon u,
only through its evenness or oddness. Therefore, o (y,M /
2, 4+ ) is independent of y.
(5) Zone-center invariance B:
"Combining symmetry (3) with symmetry (4) leads to
an extension of (4), namely,

el M 72), £ 1] = |oly,(M/2), 7 1 (34)

for all y,y’. The above symmetries reduce the number of
possible structure factors. For every value of y there are only
M possible values, and there are M /2 possible values of 7.
The total number of possible structure factors is further lim-
ited by the following remarkable theorem.

F. The yp symmetry theorem
The yp symmetry theorem says that
{lo(yp, £)={o(v'p, £)} (35)

forall y and '; i.e., the set of structure factors, for given M, is
independent of y.

In particular, the theorem says that once one has calcu-
lated the structure factors for the special case y = 1, using
the simple closed-form expression of Eq. (26), one knows
what the structure factors will be for any value of 7. One does
not immediately know, however, in what order they will ap-
pear.

The theorem is proved in Appendix B. The appendix
shows that, for any ,

oV yP I, £) =0(lp', +). (36)

Theorem A guarantees that, for any value p, there is a value
of p’ such that p = (yp’),,. Therefore, Eq. (36) covers all
possibilities. By working out the values of (yp),,, one may
learn the order of appearance of the values of o(1,p, 4+ ) in
the sequence of o (y,p, + ).

Il. APPLICATIONS

There are two applications of the fractional addressing
technique. The first is a digital oscillator that produces a sine
tone or other periodic waveform. In this case, the goal is to
minimize the distortion.

The second application is a complex tone generator that
makes use of the distortion components introduced by frac-
tional addressing. This application is similar to the FM syn-
thesis technique described by Chowning (1973). Starting
with a sine wave in the buffer, the technique provides an
efficient way to create complex inharmonic spectra, spectra
of bell tones, for example. In this application, the symmetries
described above are of particular interest.

Fractional addressing and FM synthesis also share a
common liability. Although it is straightforward to calculate
a spectrum as a function of the input parameters, it is not at
all clear how to invert this relationship. The present article
will have little more to say about complex tone synthesis.

A. The digital oscillator

Equation (26) is a simple closed-form formula by which
the structure factor can be calculated for the case y = 1. If
the input waveform is a sine or cosine wave, then the struc-
ture factor is equivalent to the output spectrum, apart from
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the form factor H. Because of the yp symmetry theorem, one
knows that the spectral levels of distortion products calcu-
lated for = 1 actually apply for any value of y.

In a successful digital oscillator, the level of each distor-
tion component must be small. However, the denominator
of Eq. (26) is never greater than 1. Therefore, the numerator
must be made small by choosing a small C /L. In that case, to
an excellent approximation, the structure factor is given by

lo(yp, £)| =1, (37a)
for p an integer multiple of M, and
7C /LM
olyp, )| =—/——77, (37b)
lo(rp | [sin(7p'/M) |

’

otherwise, where (yp), =p'.

Therefore, spectral satellites to the left ( — ) and to the
right ( + ) of multiples of R '/M are equal. There are only
M /2 4+ 1 different values of 0. Unlike the exact symmetries
presented in Sec. I, the ( 4+ ) symmetry depends upon C /L
being small. This symmetry is nearly exact, however, for any
practical digital oscillator.

Equation (37) shows the advantage of long buffers
(large L /C). If the buffer is lengthened by a factor of 2, the
level of each distortion component is decreased by 6 dB.

The equations in this article depend upon C and L only
through their ratio. For the digital oscillator, there is never
any advantage to choosing C to be greater than 1. A value of
C greater than 1 simply decreases the effective length of the
buffer, which decreases the frequency resolution [Eq. (4)]
and increases the distortion [Eq. (37)].

Equation (37) shows that the largest distortion compo-
nent always corresponds to p’ = 1. Values of this component
are given in Table I for several values of L, and for essentially
all values of M.

Figure 5 shows the spectrum of a digital oscillator for a
simple case: The output sample rate is 16 384 Hz, and there
is a single cycle in a buffer of length 2048. The increment is
A = 100 + ! so that the oscillator frequency is 801 Hz. The
frequency range in Fig. 4 extends to half the sample rate. The
other half of the first zone is the mirror image of Fig. 4 (sym-
metry 3), and all other zones are identical to the first (sym-
metry 1). Because the oscillator frequency is less than half
the effective sample rate of 16 384/8, all distortion compo-
nents appear above the oscillator frequency. Because y = 1,
the spectrum decreases monotonically.

Figure 6 shows the result of increasing the increment to
A =600 + 3, so that the oscillator frequency is 4803 Hz.

TABLE I. Worst case distortion component (p = 1) for the case of C =1
cycle in a buffer of length L samples. Levels are given with respect to the
level of the signal at the main oscillator frequency, corresponding to p = 0.

Distortion (dB) Distortion (dB)

M L =2048 L =32768
2 —62.3 — 86.3
4 —65.3 —89.3
8 — 66.0 —90.0
16 —66.2 —90.2
o — 66.2 —90.2
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FIG. 5. The spectrum of the lower half of the first zone includes frequencies
up to half the sample rate. There is 1 cycle in a 2K buffer. The sample rate is
16 384 Hz, and the increment is 100 -+ . The desired sine is thus at 801 Hz.
Spectral components are labeled with p + .

More than half of the distortion components now appear
below the oscillator frequency, and, because y = 3, the com-
ponent levels appear to be scrambled. However, the symme-
tries of Sec. I are sufficient to show that the component levels
in Fig. 6 are actually identical to those in Fig. 5.

Figures 5 and 6 and Table I do not include the form
factor. Because the form factor decreases monotonically
over the frequency range shown, it breaks all the symmetries
in the figures, but not by much. Including the form factor

—+ > —_
—B65 + 3» 5»__ -+
™ -66— 9 o+
~ 67+ -
:E; —68 T
T -69+ +
(V)
S 70+ +
_~2+ 6_.
—71 + j_
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FIG. 6. The same as Fig. 4, except that the increment is 600 + . Thus the
desired sine is at 4803 Hz.
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improves the relative distortion figures for Fig. 5, where the
oscillator frequency is low. It has the reverse effect if the
oscillator frequency is higher than most of the distortion
component frequencies.

B. Total distortion

Table I shows that the largest single distortion compo-
nent occurs for the simplest fractional part, namely,
y/M = 1. However, for M = 2, there are only two distortion
components in the zone, and one of these lies above half the
sample rate. For larger values of M, there are more distor-
tion components. One might expect, therefore, that the total
distortion increases for increasing M.

The total distortion, relative to the level of the sine at
p =0, is given by the sum of the squares of the individual
distortion components in the lower half of the first zone,
from zero up to half the sample rate. Distortion components
at higher frequencies are presumed to be removed by low-
pass filtering.

Initially it would seem to be impossible to find a simple
form for this sum. If one ignores the slowly varying form
factor, however, the symmetries discussed above lead to a
very simple result. By + symmetry, one knows that there
will be two equal distortion satellites for every value of p,
except for p = M /2, where there is only one. But special
treatment for the component at p = M /2 is possible, in gen-
eral, because the zone-center invariance theorem says that
the value of this component is independent of . Further, yp
symmetry ensures that all the other components in the sum
are independent of . Therefore, the total distortion power
(TDP) can be obtained simply by summing the components
given by Eq. (26); i.e., for any y, and C /L small,

o= (G G 8 () )

It is convenient to think of TDP as the product of (C/L)*
and a factor depending only on M. Then, for C = 1, the TDP
in decibels is given by

TDP(dB) = Q(M) — 20 log(L). (39)

Function Q(M) is given in Table II. For example, for the
cases of Figs. 5 and 6, where M = 8 and L = 2048,

TDP(dB) =5.1 — 66.2 = — 61.1dB. (40)

As expected, Table II shows that the total distortion does
increase slightly for increasing M.

C. Complex waveforms

Calculations of the levels of the individual distortion
components and of the total distortion for a complex wave-
form with harmonic partials are rather straightforward be-
cause of the linearity of the general formalism. If there is 1
cycle of the waveform (i.e., of the fundamental) in the buff-
er, then there are 2 cycles of the second harmonic, etc. Gen-
erally, then, the levels of the distortion components attribut-
able to the nth harmonic are given by Eq. (26) with C
replaced by nC. The distortion spectrum can be computed in
this simple way, except in the unlikely case of accidental
frequency degeneracies.
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TABLE II. Total distortion power term Q as a function of the denominator
of the fractional part of the address increment.

M Q(dB)
2 392
4 4.39
8 5.10
16 5.15

32 5.17
o0 5.17

A distortion component must also be weighted by the
amplitude of the harmonic » that produces the component.
In the case that the amplitudes of the harmonics are all the
same, a component, labeled by p, 4 , increases with increas-
ing n at a rate of 6 dB per octave. In this case, the total
distortion, relative to the total waveform power, is equal to
that for the fundamental alone multiplied by
(N + 1)(2N + 1)/6, where N is the number of harmonics.
The above expression is valid so long as NC /L is small. For
most practical waveforms, however, the harmonic ampli-
tudes eventually decrease with increasing harmonic number
and the actual total distortion is less than given above.

D. An alternative calculation of total distortion

In this article, the total distortion due to fractional ad-
dressing was computed by summing the individual compo-
nents in the distortion power spectrum. An alternative cal-
culation of the total distortion can be done in terms of the
waveform. Here, one sums the squared differences between
the desired waveform at successive instants in time and the
actual values that come from the fractional addressing
scheme. Moore (1977) has performed such calculations for
digital oscillators in which the fractional address is either
truncated, rounded to the nearest integer, or used to interpo-
late between successive input samples. Moore’s calculations
show that the total distortion is least for the interpolating
oscillator and greatest for the truncating oscillator. How-
ever, Rossum (1985) has made the (somewhat counterin-
tuitive) observation that both truncating and rounding actu-
ally lead to the same total distortion. This occurs because
rounding is equivalent to adding a constant of 0.5 to each
fractional address and then truncating. Therefore, the two
procedures should differ only by a phase shift in the output,
which does not affect the levels of the distortion compo-
nents. The present work confirms Rossum’s observation;
calculations of the total distortion from Eq. (25) are un-
changed if a constant is added to yu.

Therefore, Moore’s calculation for rounding oscillator
is the correct approach for the distortion in both rounding
and truncating oscillators, and this calculation should agree
with Eq. (39) above. A comparison shows that the two do
agree to within 1 dB, except for a buffer length L = 32 where
Moore’s calculated distortion is 1.4 dB too large.

lll. CONCLUSIONS

The technique of fractional addressing makes it possible
to build an efficient digital oscillator. With a single cycle of a
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waveform fixed in a buffer memory and with a fixed sample
rate one can obtain arbitrarily good frequency resolution
over the entire frequency range up to half the sample rate.
The resolution is given by the sample rate divided by 2N,
where N, is the number of bits in the address register [Eq.
(4)]. The cost of adding more bits to the register is negligi-
ble. For most purposes, there is probably little point in going
beyond 24 bits, because the corresponding frequency resolu-
tion is comparable to the stability of the crystal oscillator.

The fractional addressing technique introduces distor-
tion, because an address increment with a fractional part
equal to /M effectively reduces the sample rate by a factor
of M. Sections I and II of this article show how the spectrum
of the distortion components can be calculated. The distor-
tion spectrum depends upon the “structure factor,” which
relates the input spectrum to the output spectrum. Calcula-
tions are particularly simple if the input spectrum is a sine
wave, but the relation is a linear one, and the formalism may
be used to calculate the output spectrum for a complex input
waveform by superposition. With the right structure factor,
the distortion components can all be reduced to acceptable
levels.

The structure factor is nonlocal, but it exhibits a number
of symmetries that simplify calculations using it. The most
remarkable of these is the yp symmetry theorem, which says
that the set of levels of the distortion components is indepen-
dent of the numerator of the fractional part of the increment,
and depends only upon the denominator. The symmetries
make it possible to calculate both the level of the largest
distortion components and the level of the total distortion
power. The result for the total distortion power is a simple
one. Indeed, for some purposes, the entire contents of this
article can be summarized by the statement that the total
distortion power, in decibels relative to the power of the de-
sired signal, is equal to

5 —201log(L), (41)

where L is the length of the buffer. As shown in Table II, this
expression is good to within 1 dB, and it applies for any
fractional address.

The design of a digital oscillator is thus mainly a choice
of buffer length. For signal-to-noise ratios typical of analog
systems, about 60 dB, a buffer length of 2 or 4K words is
adequate. To maintain consistency with 16-bit digital audio
systems (theoretically 96 dB), a buffer length of 32 or 64K is
required.

It seems evident that, whenever a theory exhibits sym-
metries that lead to a result of such dazzling simplicity as Eq.
(41), there must then be a higher symmetry operating. In
the present case, that higher symmetry is almost surely the
law of conservation of energy, but we have been unable to
make the theoretical connections necessary to use it.

A few caveats are also in order. The presence of the form
factor complicates matters because it breaks all the symme-
tries. The main practical result of this is that the distortion
now depends somewhat ( + 4 dB) on the frequency of the
oscillator output and, in particular, on the integer part of the
address increment. By contrast, the structure factor is entire-
ly independent of the integer part. The form factor is actually
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not present if the DAC output is a spike train instead of a
staircase. The form factor is similarly irrelevant if the output
filter includes sin (x)/x correction.

This article has, of course, considered only an “unintel-
ligent” signal-generating system. Samples were recorded
into the buffer and subsequently simply sent to the DAC,
without interpolation. Commercially available arithmetic
processors can perform interpolation as well as other signal
control functions, such as amplitude control. Distortion fig-
ures in intelligent systems are not limited by the calculations
in this article. However, if local intelligence is not needed for
other functions, it may be more cost effective to build an
unintelligent digital oscillator and pay the price of a longer
buffer, as described, for example, by Eq. (41).

Note added in proof: After the present article was ac-
cepted, Robert Maher discovered the article “Noise spectra
of digital sine generators using a table lookup method,” by S.
Mehrgardt [IEEE Trans. Acoustics, Speech Signal Process.
ASSP-31, 1037-1039 (1983) ]. Although the final equations
are somewhat difficult to interpret, the article by Mehrgardt
appears to include some of the results of the present work.
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APPENDIX A: PROOF OF THEOREM A

Theorem A is as follows. “If ¥ and M are relatively
prime integers, then the set of integers given by

sety={(dn}, ©=012,..M—1
is identical to

set 1 =1{0,1,2,.... M — 1}.”

Proof: Because the notation (yu),, means yu modulo
M, the only possible members of set y are the integers zero
through M — 1.

To show that set ¢ is equal to set 1, it is sufficient to show
that no two members of set ¢ can be the same. To do this, we
suppose that the contrary is true, namely, that there are two
values of u, u, and u,, (14,#u,), such that

V) s = V2 ue- (A1)
Then there must be some integer K, such that
y(u, —u,) = MK. (A2)

A central theorem of number theory (Schroeder 1986),
however, states that if ¥ and M are relatively prime, then Eq.
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(A2) can hold only if (14, — 1,) is an integer multiple of M.
But 44, and u, are both in the range zero to M — 1; hence,
their difference can never be an integer multiple of M. There-
fore, Eq. (A1) cannot hold, and all the members of set ¥
must be distinct. Therefore, set ¥ must be equal to the set of
successive integers from zero to M — 1.

Q.E.D.

APPENDIX B: PROOF OF THE y-p SYMMETRY
THEOREM

The theorem applies to Eq. (25),

[ = 27Ti(p,u + % <W>M)].
(B1)

For convenience, we replace notation ( ),, by ( ) below.
The theorem is as follows.
“For any values of y and p, there exists a p, such that

o(ypy £) =0(lp, +).” (B2)

To prove this theorem, we consider a particular p, given by
(¥p:). (Theorem A shows that, for any value of p,, a value of
P, exists.) Then

IMr—l
o(y,p, +)=— ex
(rp ) =- > exp

=0

1 Mt — 2mi
U(%Pz;i)z — z exp{ M

X (;;;.Wl T <w1>)]. (B3)

By theorem A, the sum over u, is equivalent to a sum
over i,, where
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o= {yu,)-

We may also replace {p,7)u, by (p,7u,) because of the
factor 277i/M. Then

1 ¥t — 2 Cc
o(ypy +) =ﬁmz_oe><p[ M“((.D.W.) + Zuz)]-
(B4)
Now <P|7/"1> = <P|<7’,u1)> = (Pl.uz)-

Hence, we have

[ (v = L]
(BS)

But the right-hand side of Eq. (BS) is simply equal to
o(1,p,, + ), where p, is chosen to be such that

(vp1) =P

lel
U(V;szi)zﬁ > exp

=0

(B6)
Q.E.D.
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