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This article is concerned with fluctuations in noise power and with the role that such 
fluctuations play in the masking of sine signals by noise. Several measures of noise fluctuations 
are discussed: the fourth moment of the waveform, the fourth moment of the envelope, and the 
crest factor. Relationships among these quantities are found for cases of equal-amplitude 
random-phase noise and Rayleigh-distributed-amplitude noise. Of particular interest is a 
special non-Gaussian noise called low-noise noise in which the fluctuations are small by any of 
our measures. The results of frozen-noise masking experiments are reported, where the noise 
waveform was fixed for all stimulus presentations. In separate experiments, equal-amplitude 
random-phase Gaussian noise, with typical fluctuations, and low-noise noise, with almost no 
fluctuations were used. The data show that for a noise bandwidth less than the critical 

bandwidth, the masked threshold is about 5 dB lower for low-noise noise than for Gaussian 
noise. When the noise bandwidth is larger than the critical bandwidth, the masked threshold is 
the same for both kinds of noise. It is concluded that noise power fluctuations increase masked 
threshold by about 5 dB and that filtering by the auditory system reintroduces fluctuations into 
broadband low-noise noise. 

PACS numbers: 43.66.Dc, 43.66.Nm, 43.60.Cg [WAY] 

INTRODUCTION 

The problem of the detection of a sine signal in masking 
noise can be approached in terms of signal detection theory 
(cf. Green and Swets, 1966). According to the theory listen- 
ers make their decisions on the basis of a likelihood ratio, the 
ratio of the probability that the stimulus comes from a popu- 
lation of signal-plus-noise stimuli to the probability that the 
stimulus comes from a population of noise-alone stimuli. In 
principle, the probabilities might depend upon a number of 
dimensions of the stimulus (Ahumada and Lovell, 1971; 
Ahumada et al., 1975). If the phase of the signal is unknown 
by the listener, and if the signal cannot be spectrally resolved 
from the noise, then total stimulus energy is a basis for an 
optimal detection strategy (Bos and deBoer, 1966). In this 
case, signal detection theory becomes an energy detection 
theory, whereby the listener's performance is limited by the 
variance of a probability distribution for an internal repre- 
sentation of energy or for some quantity that increases mon- 
otonically with increasing energy. 

In a typical masking experiment the noise is created by a 
thermal noise generator. Because the output power of the 
generator fluctuates, the energy in the stimulus varies from 
one experimental presentation to the next. If the noise has a 
Gaussian distribution, then energy detection theory makes a 
strong prediction for detectability: For a d' of unity the de- 
tectable signal energy is approximately equal to the noise 
power density multiplied by the square root of the product of 
the noise bandwidth and the stimulus duration. The latter 

quantities are normally well defined physically, but the val- 
ues corresponding to the internal representation may be in- 
fluenced by the critical bandwidth and the auditory integra- 
tion time. Incorporating these elements of the auditory 

system into the energy detection model introduces some un- 
certainty concerning the predictions of the model. However, 
the sum of the evidence is that the model predicts perfor- 
mance that exceeds the performance of human listeners 
(Green, 1960; Raab and Goldberg, 1975). The model can be 
brought into agreement with experiment by introducing the 
concept of.an internal noise, statistically independent of the 
external noise, which adds a further source of variance to the 
internal distribution (de Boer, 1966; Green and Swets, 
1966}. To fit the data usually requires that the internal noise 
be as large as or several times larger than the external noise 
(Green, 1964; Raab and Goldberg, 1975; Gilkey, 1981 ). 

An alternative kind of masking experiment replaces the 
thermal noise generator with a source of frozen noise. With 
frozen noise the masker waveform is the same on each ex- 

perimental interval, there is no stimulus variance, and detec- 
tion performance should be limited by internal noise alone. 
If internal noise does in fact exceed the external noise, one 

expects that this replacement should have little effect on de- 
tection thresholds. Experimentally it is found that thresh- 
olds are actually reduced when frozen noise is used (Pfafflin, 
1968), though the amount of the reduction varies with dif- 
ferent noise samples and with the relative phases of the signal 
(Hanna and Robinson, 1985}. 

The distinction between external noise and internal 

noise becomes blurred when stimulus intervals are longer 
than the auditory integration time. In that case the listener 
must sample the stimulus. Variations in sampling strategy, 
which is a form of internal noise, lead to variations in the 

internal representation of the noise energy, and these depend 
upon the momentary fluctuations in the stimulus power. In 
the general ease it may be possible to reduce thresholds 
further by using non-Gaussian noise in which the fluetu- 
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ations have been reduced. This is not difficult to do. A ran- 

dom telegraph wave, namely, a random sequence of + 1 and 
-- 1, is an example of a waveform with zero power fluctu- 

ation ( Feth, 1970). Of course, such a noise has a broad band- 
width. If one tries to control the bandwidth by filtering, then 
power fluctuations are reintroduced. A noise generated by 
frequency modulating a tone also has no fluctuation in enve- 
lope power. Margolis and Small (1974) attempted to control 
both power fluctuation and bandwidth by frequency modu- 
lating a tone with thermal noise that had been peak clipped. 
There are two sources of band broadening in such a wave- 
form, the harmonic distortion introduced by the clipping 
and the higher-order FM sidebands. It was apparently possi- 
ble though to reach some compromise in this case between 
power fluctuation and bandwidth control. Margolis and 
Small found that masked thresholds within the noise pass- 
band were 5 to 10 dB smaller for the FM noise than for 

thermal noise with the same power. 
The present article is also concerned with the role that 

noise fluctuations play in masking. Section I compares sever- 
al different measures of noise fluctuation and briefly de- 
scribes the low-noise noise algorithm developed by one of us 
(Pumplin, 1985). The algorithm generates noise with very 
small fluctuations according to any of our measures, ap- 
proaching those for FM, while maintaining strict control 
over the bandwidth. Sections II and III describe masking 
experiments in which masking by low-noise noise is com- 
pared with masking by noises having statistically probable 
fluctuations. 

I. NOISE FLUCTUATIONS 

There are a variety of different measures of noise fluctu- 
ations. The purpose of this section is to discuss and compare 
some of them. The comparisons are based upon studies of 
bandlimited periodic waveforms with period T. Such a noise 
waveform can be written as the sum of cosine components, 
separated in frequency by the reciprocal of T: 

/2•rnt ) 
where •, is the phase angle of the nth component, and the 
number of components is N = N2 -- N• d- 1. 

Below we will consider moments of the waveform; the 
mth moment is defined as 

x r• = x"•(t)dt. (2) 

The second moment (rn = 2) is the average power, which is 
independent of phases. If all component amplitudes X• are 
equal to unity, the second moment is 1/2. The odd moments 
ofx are zero, and the higher even moments describe fluctu- 
ations. 

A. The waveform fourth moment 

The fourth moment of the waveform is a measure of 

fluctuation that is closely related to the variance in instanta- 
neous power. It is convenient to work with a fourth moment 
that is normalized by the square of the average power, name- 
ly, 

W= x•/( f•)2. (3) 

The variance of the power, as a fraction of Me square of the 
average power, is equal to W- 1. The square root of W- 1 
is the standard deviation of the instantaneous power, in units 
of the average power. 

The ensemble-averaged value of W, for a waveform with 
Ncomponents of equal amplitude, can be calculated exactly. 
It is given by 

(W) = 3 -- 3/(2N). (4a) 

If the component amplitudes are Rayleigh distributed, then 
the ensemble-averaged W is equal to 

(W) = 3-- 3/(N+ 1). (4b) 

Equations (4a) and (4b) are proved in Appendix A. In the 
limit of large N they are the same, as expected, because in this 
limit, equal-amplitude noise and Rayleigh-amplitude noise 
have the same statistical properties (Rice, 1954). 

We have studied the distribution of •V for a variety of 
random-phase noises of the type given by Eq. (1) by per- 
forming numerical experiments, summarized in Table I. 
Each entry in this table was obtained by generating an en- 
semble of 2000 waveforms, using equal amplitudes and ran- 
dom phases which were computed anew for each waveform. 
The computed mean agrees with Eq. (4a). Table I also gives 
the standard deviation about the mean and the median value 

of W. The median is less than the mean because the distribu- 

tion of W has a tail to the right; plots of this distribution were 
given by Hartmann (1987). The quantity W is the basis for 
the low-noise noise algorithm (Pumplin, 1985) used to cal- 
culate noise maskers for the experiments described in Sec. II. 

B. The envelope fourth moment 

The fourth moment of the envelope provides an alterna- 
tive measure of noise power fluctuations. For the waveform 
of Eq. ( 1 ) the envelope is 

E(t) ---- 1 ,,--•v, X"ei•2•"'/r+ •"• ' (5) 
The envelope power is given by the square 

Xcos [2•r(n -- n')t/T+ •b, -- •.. ]. (6) 
Its time average is equal to twice the average waveform pow- 
er, while the 'sum over frequency differences describes in- 
stantaneous fluctuations. 

It is useful to compare the fluctuation in the envelope 
power with the fluctuation in the waveform power discussed 
in Sec. I A. As shown in Eq.(6), the envelope fluctuation 
involves only differences between the component frequen- 
cies. For example, for N = 2 the envelope fluctuation corre- 
sponds to the familiar beats at the difference frequency. 
When there are many components, the envelope fluctuation 
derives from beats among all possible pairs of components. 
By contrast, the fluctuation in waveform power involves 
both frequency differences and frequency sums. 

In the standard model of energy detection, a temporal 
integrator follows the square-law device (Green and Swets, 
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TABLE I. Properties of the distributions for the normalized fourth moment (W) an d crest factor (C) for equal-amplitude random-phase noise, as described 
by Eq. ( 1 ). The lowest frequency spectral component is N•; the highest is N:. The distributions were determined by numerical experiments with 2000 noise 
waveforms. Entries labeled "Equations" were calculated from Eqs. (4a), (C6), (C4), and (C5) of the text, using K = 8N/3. 

w = x•/(•2 C = maxlxl/(x•Z• 
N= M= 

N• N: N: -- N, + 1 (N• + N:)/2 Median Mean s.d. Median Mean s.d. 

1 11 11 6 2.73 2.86 0.71 2.52 2.55 0.35 
15 25 11 20 2.73 2.86 0.62 2.67 2.72 0.35 

495 505 11 500 2.70 2.86 0.67 2.72 2.78 0.37 
995 1005 I 1 1000 2.70 2.86 0.67 2.72 2.78 0.37 

Equations 11 2.86 2.73 2.79 0.42 

I 51 51 26 2.90 2.97 0.38 3.02 3.06 0.36 
75 125 51 100 2.91 2.97 0.30 3.21 3.25 0.34 

475 525 51 500 2.92 2.97 0.33 3.24 3.29 0.36 
975 1025 51 1000 2.92 2.97 0.33 3.24 3.29 0.36 

Equations 51 2.97 3.25 3.30 0.37 

I 151 151 76 2.97 2,99 0.23 3.35 3.39 0.35 
125 275 151 200 2.97 2.99 0.20 3.49 3.55 0.35 
425 575 151 500 2.97 2.99 0.20 3.54 3.60 0.35 
925 1075 151 1000 2.97 2.99 0.20 3.54 3.61 0.35 

Equations 151 2.99 3.57 3.61 0.34 

1966, Chap. 8). Fluctuations in the output of the integrator 
come only from the frequency difference terms; frequency 
sum terms vary too rapidly to appear as fluctuations in the 
output. Therefore, the envelope fourth moment is a descrip- 
tion of fluctuation which is more consistent with the stan- 
dard model than the waveform fourth moment. The calcula- 

tion of noise fluctuations by Hartmann et aL (1986) was 
based on the fourth moment of the fluctuation in the enve- 

lope, as passed through an integrator, a model similar to 
Jeffress (1968). 

The fourth moment of the envelope, normalized by the 
square of the envelope power, is defined as 

y= ff•/( ff•)2. (7) 

The variance of the envelope power, as a fraction of the aver- 
age envelope power, is given by Y-- 1. The standard devi- 
ation is ( Y- 1 ) •/: 

The ensemble-averaged value of Y, for a waveform with 
Ncomponents of equal amplitude, can be calculated analyti- 
cally: 

(Y) = 2 -- 1/N. (8) 

For a sine waveform (N = 1 ) the ensemble-average variance 
is zero, as expected. The ensemble-averaged standard devi- 
ation of the envelope power E • is always less than the enve- 
lope power itself, though it approaches the envelope power 
for large N. 

There is a useful theorem which applies in the case that 
the noise is narrow band. In that case, the envelope fourth 
moment and the waveform fourth moment are related by a 
simple factor, for any waveform of the form of Eq. ( 1 ). The 
result, proved in Appendix B, is that 

Y=]W. (9) 

Equation (9) holds true as long as the total bandwidth is less 
than the center frequency of the band. Unlike other conclu- 
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sions in this section, which apply to ensemble averages, 
Eq. (9) applies to any individual waveform. Because the en- 
velope, and in particular its fourth moment, is independent 
of the band center frequency, the fourth moment of the 
waveform is also independent of the center frequency, as 
long as the narrow-band condition is met. 

C. The crest factor 

The crest factor, or peak factor, is the ratio of the abso- 
lute maximum (or minimum, whichever has the larger abso- 
lute value) of a waveform to its root-mean-square value. It is 
a common way to describe fluctuations in engineering appli- 
cations. In electronic circuits employing junction transis- 
tors, hard clipping of the waveform begins at a fixed voltage 
level. Therefore, the crest factor gives a useful insight to the 
power which can be transferred without gross distortion. 
For the human auditory system, where the onset of distor- 
tion is more gradual, it may be a less useful measure. 
Schroeder's algorithm (1970) for synthesizing waveforms 
with small fluctuations was based upon considerations of the 
crest factor. 

There are few things which can be said analytically 
about the crest factor: For a sine wave it is equal to q•. For a 
waveform with N sine components of equal amplitude, the 
maximum possible crest factor is (2N)1/2, which is realized 
when all the values ore. in Eq. ( 1 ) are zero. Crest factors for 
random-phase noise are considerably less than this maxi- 
mum value. 

Numerical experiments on the distribution of crest fac- 
tors for equal-amplitude random-phase noise are summar- 
ized in Table I. The crest factor for each waveform was cal- 

culated by using a fast Fourier transform (FFT) to 
determine the approximate location of each local maximum 
in x(t), followed by a gradient search to obtain its precise 
value. The largest of the local maxima gives the crest factor. 
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Table I shows that, for narrow bands, the crest factor 
depends only upon the number of components N and not 
upon the center frequency. It also shows that the crest factor 
increases slowly with increasing N. These results can be un- 
derstood from the discussion of the distribution of crest fac- 

tors in Appendix C. There it is shown that statistical proper- 
ties of the crest factor depend upon the square root of the log 
of N, a slow dependence indeed. 

D. Fourth moment and crest factor compared 

To compare the fourth moment with the crest factor, we 
performed numerical experiments for equal-amplitude ran- 
dom-phase waveforms with N = 51 and N = 151 compo- 
nents. The results are shown in Figs. I and 2, respectively. 
Each graph shows 2000 dots; each dot corresponds to one 
waveform, i.e., one set of the random phases. The y coordi- 
nate of the dot is the crest factor and the x coordinate is the 
fourth moment. The two-dimensional distribution has an el- 

liptical shape, with an orientation which shows that there is a 
tendency for a waveform which has a high crest factor also to 
have a high value of the fourth moment. The correlation 
coefficient is 0.84 for N = 51 and 0.75 for N = 151. 

In a moment expansion of the fluctuation, the fourth 
moment of the waveform is the moment of lowest order, 

while the crest factor is determined by the infinite-order mo- 
ment. [This can be seen from Eq. (2) for the ruth moment. 
As rn increases, the integral is increasingly dominated by 
extreme values ofx(t). As rn becomes infinite, only the lar- 
gest value, essentially the crest factor, contributes to the inte- 
gral. ] The fact that the crest factor and the fourth moment 
correlate rather well in the numerical experiments leads us 
to conjecture that moments of all orders between the lowest 
and the highest should also correlate well. This means that a 
noise waveform that appears to have a large (small) fluctu- 
ation according to one measure of noise power fluctuations 
will tend to have a large (small) fluctuation according to any 
measure. This conclusion applies to noise made by adding 
sine waves closely spaced in frequency, where the waveform 
distribution is approximately Gaussian. It does not apply to 
non-Gaussian noises such as the inverted triangular distri- 
bution (small crest factor but large fourth moment) u. sed by 
Sorkin et al. (1979). 

E. low-noise noise 

The generation of signals with small fluctuations is a 
problem of long-standing interest to communications engi- 
neers. The increasing use of digital representations for sig- 
nals has increased the significance of this problem. In 1970, 
Schroeder presented an algorithm for calculating waveforms 
with low crest factors. For the case of equal-amplitude noise 
the algorithm is extremely simple to describe. One chooses 
the phase angles according to the formula 

•,, = q•o -- rrn2/N, (10) 
where •o is an arbitrary constant. 

However, the waveform created by this algorithm is pe- 
culiar in that it does not sound like noise. As noted by 
Schroeder, it is similar to a swept sine wave, beginning at the 
lowest frequency of the band and arriving, near the end of 

the waveform period, at the highest frequency of the band. If 
the components of the band are separated by I Hz then the 
duration of the sweep is 1 s. The response of a tuned system 
to this waveform shows one peak per waveform period, oc- 
curring at a iime when the instantaneous frequency of the 
waveform agrees with the resonant frequency of the system. 
If this waveform is used to mask a sine signal in the band, 
then detection of the signal is aided by beats when the instan- 
taneous masker frequency is close to the signal frequency.• 

An alternative choice is the low-noise noise algorithm 
(Pumplin, 1985), which minimizes the fourth moment of 
the waveform (equivalent to minimizing the standard devi- 
ation in power) with respect to the phases •,. The algorithm 
is tractable computationally because it is possible to calcu- 
late all necessary derivatives of the fourth moment for use in 
a gradient search, by using a single FFT. The algorithm re- 
sults in a waveform with a fluctuation which is almost zero, 
smaller in fact than the fluctuation resulting from 
Schroeder's algorithm; and the waveform is free of the nota- 
ble regularity found in Schroeder's waveform. Symbol NL in 
Fig. 1 and symbol WL in Fig. 2 show the crest factors and 
fourth moments for low-noise noises used in the following 
experiments. 

II. MASKING EXPERIMENT METHOD 

The purpose of the experiment was to determine the 
contribution which noise power fluctuations make to mask- 
ing. We asked listeners to detect a 1000-Hz sine tone in the 
presence of frozen masking noise. We compared detection 
performance for maskers made with random-phase noise, in 
which the power fluctuations are often large, with perfor- 
mance for low-noise noise, in which the power fluctuations 
are nearly zero. 

5 1 N=5i ß 
NB ' "•' <;- ' ' 

A 

2 oNL 

• ...... ::::::::::::::::::::::::::::::::::: 
1 2 3 4 5 

IXl 4 / IX} 2 
•G. 1. •atter plot showing the cr•t factor •d the wavefore tou•h m• 
ment for 2• n•ow-•nd noi• wavefores wi• 51 com•nents with fre- 
quenci• from 950 m 1050 Hz. Noi• NA •d NB from the m•ng study 
ap• at the inters•ti• of the co•nding vestal and hod•n•l •- 
rows. •w-noi• noi• (NL) and a sine wave (S) •e shown by •ircl•. 
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NL 
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FOURTH .MOMENT, ix14 / ix12 2 

FIG. 2. Same as Fig. I but for wideband noise waveforms with 151 compo- 
nents from 850 to 1150 Hz. Noises WA and WB are shown by arrows. Low- 
noise noise (WL) and a sine wave ( $ ) are shown by circles. Low-noise noise 
passed through a rectangular critical-band filter is labeled by an X. 

A. Stimuli 

Both the signal and the noise were generated digitally 
from sound files, 2048 samples long, with a sample rate of 
4096 Hz. The sounds were converted by 12-bit DACs and 
low-pass filtered from 1.8 kHz at -- 115 dB per octave. Sub- 
jects were seated in a sound-attenuating room and listened to 
the stimuli diotically through Yamaha YH-1000 head- 
phones. The noise level was always 60-rib SPL. 

There were six different noises, all centered on 1000 Hz. 
Three of them had a bandwidth of 100 Hz (spectrum level of 
40 dB). These noises were called "narrow" and were given 
the names NA, NB, and NL. The other three had a band- 
width of 300 Hz (spectrum level of 35 dB); they were called 
"wide" and were given the names WA, WB, and WL. The 
narrow-band noises had 51 sine components separated by 2 
Hz, i.e., 950,952 ..... 1050 Hz. The wide noises had 151 com-' 
ponents, also separated by 2 Hz, 850,852 ..... 1150 Hz. The 
repetition time for the noises was, therefore, 500 ms, but the 
listeners were not aware of the periodicity because the ex- 
perimental stimulus intervals were slightly shorter than 500 
ms. 

Noises NA, NB, WA, and WB were made by adding 
components with equal amplitudes and with phases chosen 
by a random number generator (0 to 360 degrees). Noises 
NL and WL were made by adding components with equal 

amplitudes and with phases chosen by the low-noise noise 
algorithm. Table II shows the crest factors and the fourth 
moments for these noises. In informal listening tests, the 
low-noise noises could easily be distinguished from the ran- 
dom-phase noises in an A-B comparison. For the former, 
the loudness fluctuations were less prominent and momen- 
tary pitch fluctuations were more prominent. However, the 
low-noise waveforms did sound "noisy," and not at all like a 
swept sine? The values of 1.58 and 1.60 for the normalized 
fourth moments of NL and WL come close to the absolute 

lower limit, 1.50, for narrow-band signals. Hence, the fluctu- 
ation in envelope power was very small ..• + 1 dB. 

Masking experiments using frozen noise waveforms, 
such as ours, generally find that masked thresholds depend 
upon the starting phase of the sine signal (Dolan et al., 1981; 
Gilkey et al., 1985). To study this effect and to eliminate it in 
our final results we used six different 1000-Hz sine signals, 
having starting phases which were integral multiples of 60 
degrees. For signal number j, the starting phase in degrees 
was • = 60j (j = 1,2 ..... 6). 

B. Procedure 

The experiment employed a two-interval forced-choice 
task, with signal and noise on one interval and noise alone on 
the other. On each interval of the trial the noise waveform 

was the same. The noise waveform was also the same on each 

trial of an experimental run. Intervals were indicated by 
lights on the response box; the listener pressed the corre- 
sponding button on the box to record his decision as to which 
interval included the signal. Feedback was given after each 
response on training runs; feedback was not given for data 
runs. 

Each experimental trial consisted of an initial delay 
(700 ms) and two stimulus intervals, each 490 ms, separated 
by a gap of 250 ms. The response interval was subject con- 
trolled. The noise, present on both intervals, was turned on 
and off with a raised-cosine envelope of 10-ms duration. The 
signal, present on one interval, was turned on and off togeth- 
er with the noise, but with a 30-ms raised-cosine envelope. 
The zeros of the 10- and 30-ms envelopes occurred at the 
same time. Therefore, the signal envelope was entirely en- 
closed by the noise envelope. 

The experimental paradigm was the staircase procedure 
described by Levitt ( 1971 ). After two correct responses the 
signal level was reduced by 2 dB; after one incorrect response 
the level was increased by 2 dB. The initial signal level was 
equal to the noise level, 60 dB SPL. In a given experimental 
run the subject reversed the direction of the staircase 12 

TABLE I!. Crest factors and relative fourth moments for the six masking noises used in the masking experiment. 

BW = 100 Hz BW = 300 Hz 
Name NA NB NI. WA WB WL 

Crest factor 

3.78 3.19 1.75 3.63 3.49 1.58 

x-z/( •)2 3.19 3.09 1.58 3.01 3.14 1.60 
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times. The first four reversals were discarded from the data 

and the remaining eight were averaged to find an estimate of 
the detection threshold. 

Each listener completed four runs for each of the six sine 
phases for each of the six noises (total of 144 runs). For a 
given experimental session the noise waveform was always 

the same. A session began with training runs so that the 
listener could become familiar with the noise. After training 
runs seemed to indicate asymptotically good performance, a 
random list of the six signal phases was made and the listener 
did two runs for each signal phase on the list. Then the listen- 
er did two more runs for each signal phase beginning again at 

60 120 180 240 300 360 

SI(3NAL PHASE (DE(3.) 
120 180 240 3O0 •60 

SI(3NAL PHASE (DE(3.) 

55. 

o 
O 50, 
-r 

1- 
1-- 

45, 

60 120 180 240 300 360 

SIGNAL PHASE (DEG.) 

I L WB 
: ; : = ß : = = : , , , , , I , , • 

60 120 180 240 300 360 

SI(3NAL PHASE (DE(3.) 

45- 

55- 

6O 

55 

60 120 180 240 300 ,360 O 

SI(3NAL PHASE (DEG.) 
60 120 180 240 300 360 

SI(3NAL PHASE 

FIG. 3. Masked thresholds as functions of signal phase for subject L for six different noisy maskers. The vertical lines are centered on the average threshold for 
each signal phase, and their lengths are two standard deviations. The horizontal line is the average threshold over signal phases (parameter c), and the 
smooth curve is the best-fit sine function. 
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the top of the list. It was usually possible to do all 24 runs for 
a given noise (four runs at each of six signal phases) in a 
single 2-h session. The ordering of the noises among the ses- 
sions was different for each listener. 

C. Subjects 

Six subjects participated in all of the experiments. Sub- 
jects B, J, and M were males; I, L, and T were females. Sub- 
jects ranged in age from 16 to 34 years, and all of them had 
normal hearing according to their own reports. B and J had 
recent experience in a variety of psychoacoustical experi- 
ments; the other listeners had never been subjects before. 
The authors were not subjects. 

III. RESULTS 

For each signal phase and each noise there were four 
experimental runs providing four estimates of the threshold. 
The average of these four was a final threshold, and the stan- 
dard deviation (N-- 1 = 3 weight) provided an estimate of 
the error? Typical data, for listener L, are shown in Fig. 3. 
The threshold values show the effects of signal phase and of 
the different noises. To parametrize the average, and the 
variation due to signal phase for a given noise, we fitted the 
data with a function that is the sum of a constant plus a sine 
curve: 

F(• ) = c + a sin (• + •o). (11) 
Appendix D shows how the three free parameters, c, a, and 
•o, were chosen to provide the best fit, in a least-squares 
sense, to the data. Because the average of the sine function 

over the six phases is zero, the constant c is a best estimate of 
the threshold for a given noise. Values oft, a, and •o which 
best fit the masking data are given in Table III. 

The choice of a sine function to fit the phase dependence 
of the data cannot be justified except as a simple way to 
describe the fact that the signal is easier to detect for some 
phase angles than for others, by using a function that is both 
smooth and periodic. The phase dependence of the threshold 
does, however, presumably reflect some form of constructive 
and destructive interference between signal and noise (Pfaf- 
fiin and Mathews, 1966), and one expects that the phase 
parameter •o for a given noise should be the same for differ- 
ent listeners, as was true for the listeners in the experiments 
of Hanna and Robinson (1985). Table III, however, shows 
that the phase parameters •o differ considerably for different 
listeners, as in the experiments of Dolan et al. (1981). The 
spread in •o is always considerably greater than the experi- 
mental spacing of A• = 60 ø except for noise WA where it is 
7(Y. 

Of course, one cannot attach much importance to the 
phase parameter in the sine curve fit if the sine curve ampli- 
tude is less than the average error in the data. Figure 3 for 
noise NL is an example of such a case. If the best-fit phase 
parameters are considered to be meaningful only if ampli- 
tude a exceeds twice the average standard deviation (the 
lengths of the error bars in Fig. 3), then many phase param- 
eters are eliminated from consideration, but those which re- 
main show a rather smaller spread across listeners: for NB a 
spread of 35 ø (N = 5), for WA a spread of 25 ø (N= 2), but 
for WB a spread of 200 ø (N ---- 3). 

An alternative approach is to consider the best-fit phase 

TABLE II1. Values ofc (average masked threshold), a (sine amplitude parameter}, and •o (phase parameter) in the best fit to the threshold data for six 
subjects and six noises. Values ofc and a are in dB; values Of•o are in degrees. Some values of •o were shifted by - 360' to minimize the overall spread among 
subjects for a given noise. 

Subject c a • c a •a 

Noise NA Noise WA 

B 50.7 0.7 -- 4 48.8 1.7 7 

I 50.1 2.3 -- 135 51.1 2.4 -- 36 

J 47.6 1.9 71 46.9 3.7 3 

L 51.6 13 -- 132 50.4 3.5 33 
M 53.6 2.9 -- 104 52.5 4.3 11 
T 46.9 2.7 -- 132 49.4 4.1 -- 16 

Noise NB Noise WB 

46.4 4.8 20 47.2 1.8 209 
50.4 5.0 - 14 48.9 2.5 209 

44.4 3.1 118 43.8 4.2 297 

51.8 4.0 16 50.8 2.8 96 
52.1 4.7 -- 9 52.1 2.1 150 

48.1 4.5 -- 7 46.9 2.1 139 

Noise NL Noise WL 

B 42.5 1.8 55 45.2 2.6 86 
I 44.8 1.6 138 48.4 2.9 I 13 
J 39.5 5.6 267 47.0 1.6 - 41 
L 46.7 0.9 261 53.4 1.9 58 

M 54.2 !.3 128 54.4 1.7 101 

T 42.9 2. I 142 46.3 0.9 149 
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parameters to be meaningful only if the sine curve gives a 
good fit to the data, falling within the error bars, as for NA 
and WB in Fig. 3 but not for NB or WA. This procedure 
results in a spread across listeners for •o, which is less than 
60 ø for four of the six noises (total N = 21 ). This latter crite- 
rion, therefore, appears to be more successful than the first. 
It eliminates fewer data, and those data which remain usual- 
ly have similar values of •o for different listeners. We con- 
clude that there is probably a reproducible relationship 
between properties of the masking noise and the functional 
dependence of signal thresholds on signal phase. In some 
cases the dependence can be fitted with a simple sine func- 
tion, but in other cases it cannot. 

It is interesting to ask whether the dependence of thresh- 
old on signal phase is systematically related to the noise pow- 

ß er fluctuations. Figure 3 suggests that the amplitude param- 
eter a may be unusually small for low-noise noise maskers. 
This behavior, however, was not generally observed. For ex- 
ample, for listener J the largest amplitude parameter oc- 
curred for the narrow-band low-noise noise. 

The value of the amplitude parameter a depends upon 
the particular noise waveform. For every subject, a is larger 
for noise NB than for noise NA. The average for NB is 4.4 dB 
(s.d. = 0.7), about twice as large as the average for NA 
which is 2.1 dB (s.d. = 0.8). In the terms of Hanna and 

Robinson (1985), noise NB would be described by a longer 
vector than noise NA. 

Of primary importance in this study are the average 
thresholds and their dependences on noise type. Figure 4 
shows the thresholds averaged over signal phase angles, for 
six listeners and three narrow-band noises. Figure 5 shows 
the corresponding thresholds for the wideband noises. The 
estimates of error shown in the figures were derived by first 

40 E• 
3O 

40 

3O 

I I 
0 NA I• NL 

I I I 

FIG. 4. Masked threshold, averaged over six signal phases, for six listeners 
for the three narrow-band masking noises. 

NA •B NL I•A #B #L 

FIG. 5. Same as Fig. 4 but for the three wideband masking noises. 

calculating the variance for each signal phase (N- I = 3 
weight) and then averaging the six variances to estimate the 
variance for a given subject and noise. Therefore, this error 
statistic includes variation due to inconsistent listener per- 
formante but excludes the variation attributable to the dif- 

ferent signal phases. The error bars in Figs. 4 and 5 show 
__+ 1 standard deviation limits. 

Table IV gives thresholds for each noise averaged over 
five or six listeners. (Listener M is omitted when the average 

TABLE IV. Masked thresholds in dB $PL from column c of Table III aver- 

aged over six subjects or over five subjects (subject M omitted). Values in 
parentheses are standard deviations (N - 1 weight) across subjects. 

Noise NA Noise WA 

5s 49.4 (2.0) 49.3 (1.6) 
6s 50.0 (2.5) 49.9 (1.9) 

Noise NB Noise WB 

5s 48.2 (3.0) 47.5 (2.6) 
6s 48.9 (3.1) 48.3 (3.0) 

Noise NL Noise WL 

5s 43.3 (2.7) 48.1 (3.2) 
6s 45.1 (5.1) 49.1 (3.9) 

Noises NA and NB = N Noises WA and WB = [F 

5s 48.8 (2.5) 48.4 (2.2) 
6s 49.5 (2.8) 49.1 (2.5) 
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is over five.) The average thresholds for narrow bands 
(N=NA and NB combined) and for wide bands 
(/4/= WA and WB combined) are our best estimates for the 

effect of bandwidth on masked threshold. The spectral den- 
sity of N was 5 dB greater than that for I4/. The noise power 
in a critical band filter, 160 Hz wide, was 3 dB greater for N 
than for W. Therefore, one might have expected a larger 
average threshold for N than for [V. Table IV, however, 
shows that this difference was only 0.4 dB. Thresholds for N 
were larger than thresholds for/4/for five of the six listeners, 
but the largest difference for any listener was only 1.1 dB. 
We have no explanation for this null result. 

IV. DISCUSSION 

The purpose of the masking experiment was to study the 
effect of noise fluctuations on masking, in particular, the 
effect of a low-noise noise masker. We consider the cases of 

narrow-band noise and wideband noise separately. Figure 4 
shows that for the narrow-band noises, thresholds are 
smaller for low-noise noise (NL) than for the noises with 
appreciable power fluctuations (NA and NB). There is one 
exception to this rule, listener M, for whom the reverse was 
true. Listener M, however, was the least successful of the 

subjects in that, for every noise, his average threshold was 
higher than that for any other subject. We are inclined to 
regard the performance of listener M as anomalous. The dif- 
ference between the random-phase noise thresholds (NA 
and NB) and the low-noise noise thresholds (NL) averaged 
over the six subjects was 4.4 dB. This difference is close to the 
average standard deviation of 4.5 dB. Averaged over five 
listeners, excluding M, the difference between the random- 
phase noise threshold and the low-noise noise threshold was 
5.5 dB. 

For the wideband noises there were three listeners for 

whom the thresholds for low-noise noise (WL) were less 
than for random-phase noise (WA and WB), and there were 
three listeners for whom the reverse was true. The threshold 

difference between random-phase noise and low-noise noise, 
averaged over six listeners, was -- 0.1 dB, a completely neg- 
ligible difference. 

V. CONCLUSION 

We performed masking experiments in which the task 
was to detect a 1000-Hz sine tone in a band of noise. There 

were two kinds of equal-amplitude noise bands, one made 
with components having random phases, the other made ac- 
cording to the low-noise noise algorithm. We found that the 
relative masking efficiency of these two kinds of noise de- 
pends upon the noise bandwidth. 

Narrow-band noise maskers made with low-noise noise 

are less effective in masking a sine tone than are narrow-band 
maskers made with random-phase noise. The difference can 
be attributed to power fluctuations, present in the random- 
phase noise but not appreciably present in the low-noise 
noise. This difference amounts to about 5 dB of masking. 
This result agrees with the difference of about 5 dB found by 
Margolis and Small (1974) for a signal in the center of their 
FM band. It can be related to the question of internal versus 

external noise. If the total variance limiting detection is the 
sum of the stimulus variance and the variance associated 

with internal noise (de Boer, 1966), then a difference of 5 dB 
when noise fluctuations are removed means that the ratio of 

stimulus variance to internal variance is 9 to 1. 

There are several possible explanations for the reduced 
effectiveness of a low-noise noise masker within the context 

of energy detection theory. The first begins by noting that 
the low-noise noise waveform distribution is bimodal, thus 
resembling the distribution which occurs when a sine pedes- 
tal is added to a Gaussian noise masker. It is known that 

adding such a pedestal improves signal detectability (Green, 
1960). This analogy, however, is probably misleading. The 
effect of the pedestal seems to be well explained by the model 
of Pfafflin and Mathews (1962), and it occurs because add- 
ing the pedestal creates a masker which is correlated with the 
signal. In our experiment, by contrast, the low-noise noise 
masker is no more correlated with the signal than is the ran- 
dom-phase noise masker. 

A better explanation for our experiment is that for stim- 
ulus intervals as long as 500 ms, the listeners do not make 
their responses on the basis of a single observation. Instead 
they make multiple observations and reach a final decision 
based on some combination of these observations. In the case 

of low-noise noise, the energy within any subinterval of the 
stimulus is very nearly the same as in any other subinterval. 
In the case of random-phase noise, the energy in different 
subintervals is different because of the noise power fluctu- 
ations. If the signal can be spectrally resolved from the mask- 
er then fluctuations where the noise is a minimum might 
make the signal more salient and, depending upon the com- 
bination rule for subinterval observations, might lead to low- 
er detection thresholds. If the signal cannot be spectrally 
resolved from the masker, as in our experiment, then energy 
variations among different subintervals must lead to higher 
detection thresholds. Such a view is consistent with our ob- 

servations. If this explanation is correct then one would pre- 
dict that in frozen-noise masking experiments, the difference 
between thresholds for random-phase noise and low-noise 
noise should become smaller as the signal duration is de- 
creased. 

For wideband maskers, by contrast, there is no differ- 
ence in the masking effectiveness of low-noise noise and ran- 
dom-phase noise. The null result for wideband maskers can 
be understood in terms of the critical-band model of mask- 

ing. The minimal power fluctuation in low-noise noise re- 
sults from the synthesis of all the components. If however, 
some of these components are rejected by an auditory filter 
then the noise no longer has minimal power fluctuation. To 
test this idea we resynthesized the low-noise noise masker 
called WL using only those components within a band 160 
Hz wide and centered on 1000 Hz. This band corresponds to 
estimates of the critical bandwidth at 1000 Hz, based upon 
masking studies (Zwicker, 1961, Scharf, 1970). The crest 
factor and fourth moment are shown by the symbol X in Fig. 
2. Although the power fluctuations in this filtered noise are 
not as large as those for typical random-phase noise, the 
fluctuations are considerably greater than those in the full 
band of low-noise noise (symbol L). In a qualitative way this 
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increase in fluctuation accounts for the fact that masked 

thresholds are the same for random-phase noise maskers and 
for low-noise noise maskers when both are wideband. 

Several predictions follow from this critical-band mod- 
el. 

(1) The masking effectiveness of a wideband masker 
should be reduced if power fluctuations within a critical 
band, centered on the signal, are reduced. 

(2) Although a random-telegraph-noise masker has the 
lowest possible crest factor and fourth moment (both are 
equal to one), it should not produce an anomalously low 
threshold because fluctuations are reintroduced by the criti- 
cal-band filter. 

(3) Masking by peak-clipped noise may result in an 
anomalously low threshold. The original noise, prior to clip- 
ping, must be in a narrow band around the signal frequency. 
The clipping operation should be hard and symmetrical 
about the waveform zero. This produces a masker that has 
little power fluctuation within a critical band, and the har- 
monic distortion (third order and higher odd order) is at 
frequencies well removed from the signal frequency. 

Finally, we note that the critical bandwidths found in 
recent masking experiments near 1000 Hz are somewhat less 
than the value of 160 Hz used in our calculations (Moore 
and Glasberg, 1983). If so, then point X in Fig. 2 would 
move closer to the cluster of points for random-phase noise. 
It is conceivable that the critical bandwidth is even smaller 

than 100 Hz. In that case, our narrow-band experiment, us- 
ing noise with a bandwidth of 100 Hz, was not optimum. A 
greater difference (greater than 5 dB) between masking by 
random-phase noise and masking by low-noise noise would 
be obtained if the bandwidth were smaller. 
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APPENDIX A: ENSEMBLE-AVERAGED MOMENTS 

This Appendix calculates ensemble-averaged moments 
of the waveform in Eq. ( 1 ) for two cases, equal amplitudes 
and Rayleigh-distributed amplitudes. The results appear in 
the text as Eqs. (4a) and (4b). 

The average second moment, or power, is given by 

where c, = cos(2•rnt/T+ •b, ), and X, is the amplitude. 
There are N 2 term in the sum. 

The time-averaged value ofc, c•, is • 6,,,, so that (A1) 
becomes 

= x2), (^2) 
i.e., the ensemble-averaged power is proportional to the en- 
semble average of the square of a component amplitude. 

Similarly, the averaged fourth moment is given by 

(x = 
(A3) 

The time average is zero unless all the n indices are the 
same or unless they are equal in pairs. There are three ways 

4 

for them to be equal in pairs. Then, because c,= 2, and. 
( cn = 4 •, we have 

X.X., + -•- 

/ 3 (1 -x'x \N •4 .,., 8 . 
3 I 1 

= (•[-•-(•. X•)2 - -•- •. X4• ]). (A4) 
It is not hard to calculate the above ensemble average if the 
distribution of amplitude X is known. However, it is more 
pertinent find the average relative fou•h moment 
(W) = ( x4/( x 2 )•). Because the first te• in the last line 

of •. (A4) is proportional to ( x = ) 2, the ensemble average 
has the simple fo• 

(W)=3 1--•2(•X• 2 ß (AS) 
Thus (W) involves the ensemble average of the ratio of 

two sums. For the case of equal-amplitude noise, the ensem- 
ble average is trivial and 

(W) = -- ]/(2N)]. (A6) 

For the case of Rayleigh-distributed noise, there is a 
simple approximate solution and an exact solution. The ap- 
proximate solution applies when there are a large number of 
te•s in each sum in •. (AS) (large N). Then each sum 
approximates its ensemble average because the distribution 
of amplitudes is independent of index n. 

For Rayleigh-distributed noise, the amplitudes have the 
probability density 

R (X) = Xe- x=/=. (A7) 

The even moments of this distribution are •ven by 

(X 2•) = dXX=•R(X) 2 • . (AS) 
Therefore, (•) = • and (•) = •, and in the large-N ap- 
proximation we find 

(W) •3 -.3/N. (A9) 

The exact fo• of (W) for Rayleigh-distributed noise 
can be obtained as follows: ( 1 ) Introduce the identity 

(AlO) 

into Eq. (A5); (2) perform the integrals over X• ..... X, which are implicit in Eq. (A5); (3) perform the integral 

over q by contour integration; (4) perform the integral over 
z, which is elementary. The result is 

(W) = 3-- 3/(N + 1). (All) 

The approximation in Eq. (A9) agrees with this exact 
result to within 1% for N)• 10. 
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APPENDIX B: WAVEFORM AND ENVELOPE FOURTH 
MOMENTS IN THE NARROW-BAND LIMIT 

Equation (9) says that for narrow-band signals the 
waveform fourth moment and the envelope fourth moment 
are related by a simple factor. This can be proved by writing 
an expression for the waveform in a way which makes the 
envelope apparent. 

The first step is to extract the mean frequency by rede- 
fining the summation variables. Taking N to be odd for sim- 
plicity, we rewrite Eq. ( 1 ) as 

, 4 
where the mean frequency is given by 

M/T= (N• + N2)/(2T) (B2) 
and 

J= (N2 - N•)/2. (B3) 

Then by expanding the cosine in Eq.(B1 ) we have 
x( t ) = F( t )cos( 2rrMt /T) -- G( t )sin( 2rrMt /T), 

where 

F(t) = -- 

and 

G(t) = 

1 

xJ• j__•_ ,X• cos(2rrjt + 
I J 

• X• sin (2rrjt + •i), 

(B4) 

(BS) 

(B6) 

and we have relabeled {X,) and {•,}. The envelope power 
can be written in terms of the variables Fand G: 

E 2 = F 2 + Ga. (B7) 

The fourth power of the waveform, obtained from Eq. (BI), 
is given by 

.g4(/) = F41t q_ • cOS(2lp) q_ I cOS(4•p) ] 
-- 4FaG [I sin(2½) + • sin(4tb) ] 
+ 6F•G211 - I cos(4•p) ] 
-- 4FG3 [I sin(2•p) -- • sin(4•p) ] 

+ G411-- 1 cos(2•p) + I cos(4•b) ], (BS) 
where we have defined •p = 2rrMt/T. 

Each term in Eq. (BS) is the product of an envelope 
factor, for example, F 4, and a factor in square brackets 
which comes from the mean frequency oscillations. The ba- 
sis of our proof is that if these two factors contain no frequen- 
cies in common, then their product makes no contribution to 
the time integral which is x TM. The highest frequency in For 
G is J/T; thus the highest frequency in envelope factors F4, 
F 3G, etc., is 4J/T. The lowest frequency in the square brack- 
ets in Eq. (BS) (apart from the constant terms) is 2M/T. 
Thus ifJ < M/2 then the oscillating factors in Eq. (BS) have 
no frequencies in common. In that case, only the constant 
term in any square bracket contributes to the time integral 
and 
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= 1 ( F2 + G2)2 ---- 1 •-•- (B9) 
The narrow-band condition J<M/2 is actually a rather 
weak one: It requires only that the total bandwidth be 
smaller than the mean frequency, or, equivalently, 

N• < 3N•. (BI0) 

Equation (B9) says that for this narrow-band condition, the 
fourth moment of the waveform is I times the fourth moment 
of the envelope, or, in normalized form, 

•-4/(-•2=1 •-•/(•-•2. (BI1) 

APPENDIX C: THE DISTRIBUTION OF CREST FACTORS 

Table I shows that for narrow bands, the crest factor 
depends only on the number of components Nand not upon 
the center frequency. This can be understood as follows: 
When the band of frequencies is narrow compared to the 
mean frequency, the cosine and sine factors in Eq. (B4) vary 
rapidly compared to factors F and G. Hence, for any given 
time t there is a domain of nearby values of t over which F 
and G are essentially constant while the oscillations at the 
mean frequency execute an entire cycle. The maximum and 
minimum values over this cycle are q- x/(F 2 -Jr G 2), name- 
ly, the envelope values. Hence, in this limit the crest factor is 
independent of the band center frequency because the enve- 
lope is independent of the band center frequency. 

Table I also shows that crest factors for different wave- 

forms tend to be rather similar in value, i.e., that they are 
narrowly distributed about the mean value and that the 
mean value itself increases only slowly with the number of 
components N. This can be understood from the following 
heuristic argument in which we imagine x(t) at different 
times t to be independent random variables. 

We consider only the narrow-band case, so that the crest 
factor is essentially given by the peak value of the envelope. 
Then, if the number of components N is large, the quantities 
Fand G in Eqs. (BS) and (B6) are, to a good approximation, 
normally distributed. Then the envelope E is Rayleigh dis- 
tributed. If all the values of X,are unity, then Fand G have 
variance •, and the probability density for envelope E is given 
by 

dQ = 2Ee- E2. (CI) 
dE 

The cumulative distribution is 

Q(E) = dQ = I - exp( -- E2). (C2) 

The probability density for the largest of Kindependent sam- 
pies from the distribution of Eq. (C1), z = max [El ,E2 ..... 
E•c ] is f, given by 

d 

f (z) ---- •zz Qg(z), (C3) 
because Q is the probability that a single E will be less than z. 
Computing moments by numerical integration, we find a 
mean peak value of 

{z) • [In(1.7K) ] t/2 (C4) 
and a standard deviation of 

( (z •) _ (z)•)112,•0.648/[]n(3.4K ) ] ,/2. (C5) 
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These approximations are accurate to 1% for all K greater 
than 5. 

The median can be calculated analytically from Qg. It is 
given by 

Zmedian = x/In[K/In(2) ]. (C6) 

By differentiatingf we find the most probable value, where 
the maximum of densityf occurs. It is given by 

Zmode = [In(K) ]t/2. (C7) 

The middle 68% range of the distribution for peak values of 
x is defined by upper and lower limits, 

z• .... • [ln(0.546K) ]•/2, zum,• r • [ln(5.736K) ],/2. 
(C8) 

For large K, we can write 

zupp• -- z• .... .•0.588/[1n( 1'. 18K) 1 •/2, (C9) 
which is similar to Eq. (C5), but not identical because the 
distribution is not Gaussian. The results of Eqs. (C4)-(C9) 
apply to the peak values of the waveform. Because the crest 
factor is normalized by the rms value, the above values for z 

must be multiplied by x/• to obtain the corresponding values 
for the crest factor. The results also depend upon the number 
of components N, but that dependence does not appear in 
Eqs. (C4)-(C9) because of the initial normalization of the 
waveform in Eq. ( 1 ). The dependence on N can be made 
explicit by dropping the normalization in Eq. ( 1 ), where- 
upon one must simply multiply all the results in Eqs. (C4)- 
(C9) by x/•, and not by x/•. 

To use the above formulas we must estimate the number 

of independent samples K. It is evident that in order to track 
the waveform envelope with some accuracy, the rate of tak- 
ing samples, K/T, must be somewhat larger than the maxi- 
mum frequency in the envelope, which is N/2 T. Therefore, a 
lower limit for K/Tshould be about N/T. If the noise is not 

periodic, then the value of K itself depends upon the duration 
of the noise record (Rice, 1954; Beranek, 1954), but for the 
noise described by Eq. ( 1 ), which ultimately repeats, there is 
an upper limit to K. Because a sample rate of N/Tapproxi- 
mates the envelope on the average, the upper bound for K 
cannot be much larger than N, the number of sine compo- 
nents. A value between 2Nand 3Nappears to be a reasonable 
choice. Fortunately, it is not necessary to specify K precisely 
because the statistical properties [Eq. (C4)-(C9) ] depend 
only weakly on K. A value ofK = IN, accounts for the medi- 
an and mean crest factors and for the s.d. in Table I. 

This requires that optimum values of c, a, and 4o be chosen 
to minimize the error, 

P 

E= • [Lp(4n)--Fn] 2. (D2) 
p=l 

Such a minimization can be done in general with numerical 
search proceduresß This Appendix shows that the best-fit- 
ting parameters can be obtained directly if three conditions 
are met: 

( 1 ) The number of data points Lp at each value of 4, 
must be the same, namely, P/N. 

(2) There must be more than two values of 4, (ißeß, 
N>3). 

(3) The N values of 4n must divide the circle into equal 
parts (i.e., 4• -- 4,- 1 ---- 360/N degrees; n = 2 to N). 
If these three requirements are met then the following three 
important properties follow, for all values of 40. 
PI. Zero mean: 

N 

• sin(4• + 40) = 0, (D3) 
n=l 

P2• Normality: 

s N 
sin2(4, + 40) = -- (D4) 2 

P3. Orthogonality: 
N 

• sin(4, + 4o) cos(4, + 4o) = 0. (D5) 
n=l 

Minimizing E with respect to c and using property P 1 
gives the constant term 

1 • 

c = -• p--•t Lr (4n), (D6) 
i.e., the constant term is the average threshold. 

Minimizing E with respect to amplitude a, and using 
properties P1 and P2 gives the amplitude 

2 •' 

a = -• •--•t LP(4• ) sin(4• q- 40)- (D7) 
Minimizing E with respect to 4o and using properties P 1 

and P3 give 
P 

• L• (4n) COS(4n q- 40) •--- 0, (D8) 
.p=l 

or 

tan(4o) •f= • L• (4,) cos(4, ) (D9) 
•= L•(4,) sin(4•) 1 

APPENDIX D: FITTING A SINE CURVE TO DATA 

The fitting procedure begins with a set of data points 
{Lp (4,)} (l<p<P) which represent threshold levels as a 
function of signal phases 4, ( 1 <n<N). 

The number of data points, P, must, of course, be at least 
as large as the number of phases, N. Of practical interest is 
the case where P is several times as large as N. The goal is to 
fit the data points with the best function of the form 

F• = c+ a sin(4• +4o). (DI) 

Equation (D9) can be used to solve for the best phase pa- 
rameter 4o except for an ambiguity of 180* in the arctangent 
function. The two possible choices of 4o correspond to dif- 
ferent signs for cos (4o). Differentiating E twice with respect 
to 4o shows that the error E is minimized when cos(4o ) has 
the same sign as the numerator on the right-hand side of Eq. 
(D9). The other choice of •bo actually corresponds to the 
worst-fitting phase parameter. The procedure used in the 
text above was to solve for c using Eq. (D6) and then for 40 
using Eq. (D9). That value Of 4o, used in Eq. (D7), gave a 
value for amplitude a. 
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•Smith et al. (1986) have recently done masking experiments employing 
Schroeder's algorithm for minimum crest factor noise. To create a "reason- 
able" masker they used sine components with a course spacing in frequen- 
cy so that the repetition rate of the frequency sweep was very rapid, having 
a period shorter than auditory integration times. 

2The distributions of instantaneous values of the waveforms of the random- 
phase noises and the low-noise noises were also different. These distribu- 
tions were measured by sampling the electrical signal sent to the head- 
phones at a sample rate of 65 455 Hz and with a 16-bit resolution. The 
distributions for the random-phase noises were peaked around zero and 
resembled the normal distribution. The distributions for the low-noise 
noises NL and WL were bimodal and resembled the distribution for a sine 

wave except that the discontinuities at the extremes of the sine wave distri- 
bution were replaced by tails. 

3An estimate of improvement with experience was obtained by comparing 
the first tWO runs for a given subject (6) and noise (6) and phase angle (6) 
with the second two runs. The average improvement was 0.93 dB 
(N= 216). 
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