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In this article, Pumplin's algorithm [J. Pumplin, J. Acoust. Soc. Am. 78, 100-104 (1985) ] is 
used to find periodic waveforms with minimal power fluctuations. Starting with a particular 
power spectrum, the algorithm can find a set of phases for the harmonics such that the 
variance in waveform power is a minimum or near a minimum. Such optimized waveforms are 
smooth and tend to have very small crest factors. The particular power spectra chosen for 
study include narrow- and wideband spectra, with emphasis given to signals that are useful in 
research in psychoacoustics and in physiological acoustics. 

PACS numbers: 43.60.Cg, 43.66.Nm, 43.66.Yw [LDB] 

INTRODUCTION 

A given periodic waveform, such as a simple acoustical 
signal, has a unique power spectrum consisting of a set of 
harmonic levels. A given power spectrum, however, does not 
correspond to a unique periodic waveform. There are an infi- 
nite number of different periodic waveforms, corresponding 
to different phases of the harmonics, all with the same power 
spectrum. It frequently happens in communications systems 
that the information is primarily conveyed by the power 
spectrum. In such cases one is at liberty to choose the phase 
angles of the harmonics at will. Some choices of phase angles 
lead to spiky waveforms, where the signal energy is transmit- 
ted in sharp pulses. Other choices of phase angles lead to 
smooth waveforms. Mathematically, the differences 
between these waveforms can be described in terms of power 
fluctuations. Spiky waveforms have large power fluctu- 
ations, smooth waveforms have small power fluctuations. 

In a practical communications system there is an advan- 
tage to minimizing the power fluctuation. Waveforms with 
minimum fluctuation transfer the greatest amount of power 
with a small dynamic range in waveform. Usually, this leads 
to communications with the greatest signal-to-noise ratio 
and the least distortion. In the scientific study of communi- 
cations systems, one frequently wants to control the amount 
of power fluctuation as a parameter. For instance, wave- 
forms with the same power spectrum but with different pow- 
er fluctuations can be used in psychoacoustical studies of 
monaural phase sensitivity. (Buunen, 1976; Patterson, 
1987) or in corresponding physiological studies (e.g., Deng 
et al., 1987). In general, one expects that the effects of non- 
linear distortion in a system, such as the human auditory 
system, are most easily seen the greater the difference in 
power fluctuation. 

Fluctuations can be measured in terms of crest factor, 
defined as the ratio of the maximum absolute value of the 

waveform to the rms value. For a given power spectrum, it is 
easy to generate the waveform that has the largest possible 
crest factor: One simply adds up cosines with the correct 
amplitudes and with the phases equal to zero. The maximum 
value of the waveform occurs at time zero, and it is equal to 
the sum of the amplitudes (all positive numbers). This is as 

large as a waveform with the given spectrum can possibly be. 
An alternative measure of fluctuation, called the "peak 

factor" (PF) by Schroeder (1970), is defined as half the 
difference between the waveform maximum and the wave- 

form minimum, divided by the rms value. For a waveform 
that is symmetrical about zero, the peak factor is identical to 
the crest factor. Schroeder also defined the "relative peak 
factor" (R•k) as relative to the peak factor for a sine wave- 
form. Therefore, Rpo k is equal to PF/v•. As in the case of 
the crest factor, the relative peak factor is maximized by a 
choice of phase angles that are all zero, where each harmonic 
is written as a cosine. For the efficient transmission of infor- 

mation, this choice of phases is the worst of all. 
More interesting than the worst choice of phases, is the 

attempt to find the best, the choice that leads to the smallest 
fluctuation. Beyond its practical implications, a minimum 
fluctuation is an ideal, but, apart from a few simple eases, the 
search for such optimum waveforms has proved to be diffi- 
cult. There has always been a vast territory to explore, and 
although one might find something that appears to be the 
minimum-fluctuation waveform, it was always possible that 
a waveform with still smaller fluctuation might be waiting 
on the other side of the next hill. 

Schroeder's 1970 paper presented a simple algorithm 
for choosing the phases of the harmonics of a waveform in 
order to obtain a small peak factor. The virtues of this algo- 
rithm are that it is exceedingly easy to use and that it can be 
applied in general for power spectra that are smooth and 
dense. When the algorithm works, it works rather well; the 
fluctuations in the waveforms produced by the algorithm are 
usually small. 

There are, however, signals of interest where 
Schroeder's algorithm cannot be applied. For example, if the 
power spectrum consists only of a first harmonic (funda- 
mental) and a third harmonic, the algorithm actually leads 
to the worst possible choice of phases, a choice that maxi- 
mizes the peak factor.• A further difficulty with waveforms 
generated by Schroeder's algorithm is that they are chirps, 
predominantly one frequency followed in time by another. If 
the system of interest has high Q and small minimum inte- 
gration time, e.g., the human auditory system, then the algo- 
rithm is restricted to cases where the spacing between the 
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harmonics is large compared to the inverse of the integration 
time. 

An alternative measure of fluctuations is the variance of 

the power, computed over the period of the signal. Minimiz- 
ing the variance of power is equivalent to minimizing the 
fourth moment of the waveform. • In 1985, Pumplin devel- 
oped an algorithm to minimize moments. This algorithm is 
completely general. It works for any power spectrum, and 
the waveforms that it produces seem to have no peculiar 
features apart from the fact that they have very small fluctu- 
ations. 

Experience gained in applying this algorithm (Hart- 
mann and Pumplin, 1988) led to the realization that those 
waveforms, created to minimize the fourth moment, also 
have small crest factors. It was then conjectured that the 
choice of phase angles that minimizes the fourth moment 
also leads to small values of the moments of arbitrary order. 
If this is true, then waveforms with a minimized fourth mo- 
ment have small fluctuation by any measure of fluctuation 
that one might choose. 

Our experience also found no instance in which Pum- 
plin's algorithm fails. Unfortunately, however, the algo- 
rithm does not give a closed-form expression that can be 
used in the general case. One must apply the algorithm's 
search technique anew to each power spectrum of interest. 

The purpose of the present article is to provide useful 
minimum-fluctuation waveforms. We chose power spectra 
that have been used, or are likely to be of use in experimental 
work in psychoacoustics and in physiological acoustics. We 
then applied Pumplin's algorithm to these spectra in a 
straight-forward way. Except in a few cases, the resulting 
minimum-fluctuation waveform could be described only by 
a table of the phase angles for the harmonics. Some of our 
tables appear below; more extensive tables are in a document 
called Minimum Power Fluctuations Extended Tables 

(MPFET), available from the Physics Auxiliary Publica- 
tion Service. 3 

I. THE PROBLEM AND THE PROCEDURE 

A. Definitions 

A periodic waveform as a function of time, with period 
T, is given by a sum of harmonics, 

x(t) ---- •N,A. COS +•., (1) 
where Ni and N 2 are the minimum and maximum harmonic 
numbers, and the total number of harmonics is 
N = N 2 -- N• + 1. In the tables below, the phase angles •. 
will be reported in units of radians, between 0 and 2•r. 

The fourth moment that we minimize is the quantity W 

rY= x4/(x2) •, (2) 
where the bar indicates a time average over one period. Here, 
14/is normalized by the square of the waveform power, 
which appears in the denominator. The waveform power is 
independent of the choice of phase angles, and therefore the 
normalization plays no role in the actual minimization of the 
fourth moment. 

B. The procedure 

The procedure for minimizing the fourth moment oper- 
ates in the multidimensional space of phase angles. Each 
harmonic has a phase that is a variable in the minimization 
procedure. The dimension of the space is equal to the num- 
ber of harmonics less one, because one phase can be chosen 
arbitrarily without changing the shape of the waveform. 
This space is the playing field where minimization attempts 
take place. One can move around in it looking for optimum 
waveforms. Pumplin's algorithm provides a directed search, 
based upon a gradient search procedure. Beginning at an 
arbitrary starting point in the space, the algorithm finds a 
path where the fourth moment of the waveform descends 
abruptly into a local minimum. Crucial to the application of 
the algorithm is the fact that all the partial derivatives that 
comprise the gradient in the multidimensional space can be 
determined rapidly using a single FFT. After falling into a 
local minimum, a hole in the multidimensional space, the 
gradient search stops. 

In general, we find that the space of phase angles is full 
of holes, discrete and narrow and distributed in the space 
with no apparent regularity. Some holes are deeper than oth- 
ers, and the object ofour procedure is to fall into the deepest 
hole. Therefore, we choose a succession of different starting 
points at random, falling into a nearby hole each time. In the 
end, we remember the coordinates of the deepest local mini- 
mum, and this set of phase angles is our final answer. With 
enough random starts we expect to find the global minimum, 
but the algorithm cannot guarantee that the deepest mini- 
mum that is found in a finite number of starts is actually the 

global minimum. 
We gained some insight into the statistics of the solu- 

tions from the algorithm by studying cases in which the am- 
plitudes of the harmonics are all equal. This condition leads 
to the most rugged and challenging terrain of all the spectra 
in this article. Wandering around in this space, falling into 
millions of different holes, we have learned some things. 

( 1 ) The number of holes in the space Z grows rapidly as 
the number of harmonics in the spectrum increases. The 
growth is approximately exponential. For waveforms with 
N• = 1, the function Z•exp[0.51(N2- 5.5)] describes 
the growth of the number of minima in the space when the 
top harmonic number N2 becomes large. When the number 
of harmonics is not large (e.g., 12 so that Z•28, it frequent- 
ly happens that different starting points lead into the same 
hole. In these cases, only a few starts (e.g., 1000) are neces- 
sary to be rather confident that the best local minimum that 
one finds is actually the global minimum. When the number 
of harmonics exceeds 24 (Z• 12500) there are so many 
holes in the space that we need about 1 000 000 starts to be 
confident of finding the deepest hole in the space. 

(2) For a given spectrum, the great majority of holes 
have similar depths. The different local minima correspond 
to fourth moments that are usually within a range of several 
percent. For this reason, it does not matter much whether we 
find the global minimum or not. Most holes are approxi- 
mately as good as the best hole. 

(3) The fourth moment at any local minimum is consid- 
erably smaller than the fourth moment at an arbitrarily cho- 
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sen point in the space: A factor of 2 is typical. 
(4) The local minima are narrow. When the number of 

harmonies is ten or more, there is virtually no chance of 
landing near the bottom of a hole by random jumps that do 
not follow a path down into the hole. For this reason, it is 
extremely unlikely that the popular experimental choice of 
random-phase signals (or noise) would ever result acciden- 
tally in a minimum-fluctuation waveform, or anything ap- 
proaching it. 

(5) Except in simple cases, the local minimum with the 
smallest fourth moment is not the local minimum with the 

smallest crest factor. However, by choosing holes with the 
smallest fourth moment, we obtain crest factors that are only 
a few percent larger than the smallest crest factor. Generally, 
our recent experience has confirmed the previous idea that 
minimizing the fourth moment leads to quite small crest fac- 
tors. 

The above points influenced our method of calculating 
optimum waveforms. For each new power spectrum we be- 
gan at a number of different starting points. When the num- 
ber of harmonics was small, it was sufficient to make only 
1000 starts, doing the calculations on a VAX 8650. For the 
larger numbers of harmonics, we used as many as 1 000 000 
different starting points, on a Convex 240. Using such a large 
number of starting points on a supercomputer was not done 
in order to find a lowest fourth moment of practical impor- 
tance. As noted in (2) above the different holes have very 
similar depths. Rather, our search for the absolute deepest 
hole was motivated by the hope that a pattern would emerge 
from the global minima, a pattern that would guide further 
analytic work. In the end, some patterns did emerge, as de- 
scribed below, though these patterns had less generality than 
one might have hoped for. As a result of the extensive calcu- 
lations, we are able to present global minima in the present 
article and for those waveforms in MPFET with less than 30 

components. 

damental component and a series of harmonics. For a wide- 
band signal, the phase angles that minimize the fluctuations 
in the waveform depend upon the number of harmonics and 
upon the relative levels of the harmonics. We examine here 
several such signals. 

A. Flat spectra 

I. Results 

A common choice in experimental work is to let all the 
harmonics, up to some maximum harmonic number, have 
the same level. Our results for spectra of this type are shown 
in Table I. The entries there show the phase angles, the set 
{•}, that minimize the fourth moment for eight different 
spectra, arranged by columns. In the first column are the 
phases that minimize the power fluctuation when the spec- 
trum consists of the first three harmonics, all of equal ampli- 
tude. In the second column are the phases when the spec- 
trum consists of the first four harmonics, etc. Therefore, 
from Eq. (1), an optimized signal with fundamental fre- 
quency of 100 Hz and four harmonics is given by the equa- 
tion 

x(t) = cos(2•r100t) + cos(2•r200t + 4.875) 

+ cos(2zr300t + 5.363) 

+ cos(2•r400t + 1.465). (3) 

In each column of Table I, the phases are followed by a 
check sum. This is simply a sum of all phase angles; it can be 
used as a check on data entry. Next in the column is the 
fourth moment, the quantity W. For comparison, the fourth 
moment for a single sine wave is 3/2. The relative variance in 
power can be obtained by subtracting I from the value given 
for the fourth moment. Because the relative variance must be 

non-negative, the fourth moment cannot be less than unity. 

C. Widebands and narrow bands 

The bandwidth is determined by the minimum harmon- 
ic number N I and the maximum harmonic number N 2. 
There are tables below for two situations, widebands and 
narrow bands. We define a band to be "narrow" if its center 

frequency, (N2 + N1 )/2, is greater than the bandwidth 
N2 --N• (Hartmann and Pumplin, 1988). An equivalent 
definition of a narrow band is that N2 is smaller than three 
times N•. This definition is not obvious; most people would 
probably not refer to a band that extends from 50 to 149 Hz 
as narrow. However, this definition of narrow band is cor- 
rect in the present application because it defines the ease in 
which the fourth moment is independent of the center fre- 
quency. Such independence leads to a generalization of con- 
siderable power because it is possible to translate a mini- 
mum-fourth-moment calculation rigidly along the 
frequency axis (linear Hz), i.e., to add a constant integer to 
all harmonic numbers. 

II. WIDEBAND SIGNALS 

Most of the signals of ordinary .speech and music are 
wide band. Idealized as steady-state tones, they have a fun- 

TABLE I. Wideband equal amplitude. A column of the table shows the 
phases that are needed to make a waveform that has a minimum fourth 
moment by adding harmonics according to Eq. ( 1 ), wher• the lowest har- 
monic number is ! and the highest may take on values from 3-10. For exam- 
ple, the column N----- 5 shows the phases to be used when the spectrum con- 
sists of the first five harmonics. This table applies to waveforms where all 
nonzero amplitudes are the same. 

N 3 4 5 6 7 8 9 10 

Harmonic Phases (radians) 

I 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
2 0.000 4.875 3n-/2 5.436 5.170 5.399 5.238 5.079 
3 •r 5.363 •r 3.373 0.242 4.729 5.201 4.921 
4 1.465 3•r/2 5.032 5.576 2.021 3.689 3.650 
5 0.000 0.679 2.349 5.544 0.734 0.400 
6 6.143 3.009 0.643 5.132 5.554 
7 0.177 1.056 0.300 0.775 
8 3.174 1.50• 2.062 
9 3.583 4.077 

l0 0.980 

Check •r 11.703 4•r 20.664 16.523 22.566 25.382 27.496 
Fourth 1.611 1.503 1.420 1.579 1.404 1.444 1.387 1.381 
Crest 1.659 1.523 1.607 1.671 1.460 1.707 1.537 1.505 

Ro• • 1.002 i.060 i.136 i.123 0.998 i.152 1.057 1.053 
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The standard deviation in power, relative to the power itself, 
can be obtained by taking the square root of the relative 
variance. For instance, the standard deviation in power for a 
sine wave is the square root of (3/2 - 1 ) = 0.707. The final 
entries in the table are the crest factor and the relative peak 
factor. 

Tables IA and IB (both in MPFET 3 ) are extensions of 
Table I to larger numbers of harmonics, all of equal ampli- 
tude. Table IA gives phases for Jr, equal to 1 and N 2 taking 
on increasing values from 11 through 18; Table IB presents 
phases for N• equal to 1 and N 2 equal to 20, 24, 31, 36, 48, 
and 60. 

Figure 1 puts the minimized power fluctuations into 
perspective. The values of the fourth moment from the wave- 
forms of Tables I and IA are shown by closed circles as a 
function of the number of harmonics. These values are the 

global minima for each value of N. The values from 
Schroeder's algorithm are shown by symbols $ in the figure. 
It is clear that Schroeder's algorithm never achieves the ab- 
solute minimum value, though it does remarkably well, con- 
sidering its simplicity. 

The plot labeled with open symbols O shows the fourth 
moment when the harmonics are all in "sine phase" 
(q•, = 3•r/2 for all n). This function continues to rise with 
increasing N, linearly with a slope of 2/3 in the limit that N 
becomes infinite. (See the Appendix for a proof of this.) It is 
clear that this popular choice of phases leads to a waveform 
that has relatively enormous power fluctuations. If the num- 
ber of harmonies is greater than 4, any set of phase angles 
chosen at random has an excellent chance of achieving 
smaller power fluctuations than "sine phase." 

The remaining data in Fig. I show the results of a calcu- 
lation, where 10 000 different waveforms were generated by 
picking the phases randomly from a uniform distribution. 
Such choices correspond to the starting points for our algo- 
rithm, without following any path. The average fourth mo- 

5 

1• 4. 6 8 1 16 18 20 22 24 
Number of components 

FIG. 1. Fourth moments are shown for wideband equal-amplitude spectra, 
having all hacmonics up to N, where N is given on the horizontal axis. The 
phases have been chosen in four different ways: Pumplin's algorithm 
(closed circles), Schroeder's algorithm (symbols S), sine phase (symbols 
O}, and random choice with mean (closed squares) and median (closed 
triangles). For the random choice, the 10th and 90th percentiles. and the 
minimum value for 10 000 random waveforms are given by solid lines. 

merit of these random starts is given by squares, the median 
(50th percenttie on the distribution) is given by triangles. 
The mean is always larger than the median because the dis- 
tribution has a long tail toward larger fourth moments 
(Hartmann, 1987). Lines show values for 10th and 90th 
percentties, e.g., 90% of the randomly generated waveforms 
have fourth moments that are less than the 90th-percentile 
value. 

The line labeled "rain" shows the smallest value ever 

seen in 10 000 waveforms. It shows that when there were 

only six harmonics in the waveform, we could do almost as 
well by jumping around randomly in the space as by follow- 
ing the algorithm, provided that we took the best of 10 000 
jumps. However, when there were seven or more harmonics, 
10 000jumps was not enough to approach the value obtained 
using the algorithm. 

Figure 2 gives a further view of fluctuations. The closed 
circles show the crest factor for the waveforms of Tables I 

and IA. The closed squares show the average crest factor, 
averaged over 1000 waveforms with randomly chosen 
phases. The open circles show the crest factor for waveforms 
constructed with sine phase. Again, it is evident that sine- 
phase waveforms have large fluctuation compared to the 
average random-phase waveforms, and the difference in- 
creases with increasing number of harmonics. The wave- 
forms from Pumplin's algorithm have a crest factor that is 
about 60% of the average crest factor for random wave- 
forms. Still smaller values of the crest factor can be obtained 

by minimizing higher moments. 

2. Phase freedom 

There are three distinct operations that can be per- 
formed on a set of phase angles that leave the moments of the 
waveform unchanged. First, one can add a constant value of 
•r to all the phase angles. This simply has the effect of invert- 
ing the waveform [x(t) goes to -- x(t) ]. Second, one can 
change the signs of all the phases, which corresponds to re- 
versing the direction of time Ix(t) goes to x( -- t) ]. Third, 

12 4 6 8 10 12 14 16 18 20 22 24 
Number of components 

FIG. 2. Crest factors are shown for wideband equal-amplitude spectra, hav- 
ing all harmonics up to N, where •V is given on the horizontal axis. The 
phases have been chosen in four different ways: Pumplin's algorithm 
(closed circles), Schroeder's algorithm (symbols $), sine phase (symbols 
O), and random choice with the mean shown by closed squares. 
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one can add a phase shift to each harmonic that is propor- 
tional to the frequency of that harmonic. This operation is 
equivalent to choosing a different origin for time. 4 These 
freedoms apply to any waveform, regardless of number of 
components or amplitudes. They could be used to make 
some changes in the waveforms from our tables. For exam- 
ple, in the case of the three-harmonic waveform, the opti- 
mum phases were found to be {0,0,•r) corresponding to a 
series of trigonometric functions, cos, cos, -- cos. Adding 
nrr/2 to each phase, where n is the harmonic number (free- 
dom 3), gives phase angles {•-/2,rr,•-/2). Then, subtracting 
ß r from each phase (freedom 1) gives the phase angles 
{ -- •r/2,0, -- •-/2}, corresponding to the series sin, cos, sin. 
The last waveform is equivalent to the first. 

B. Octave spectra 

Tones in which all the harmonics are octaves of the fun- 

damental can be used to study pitch chroma while minimiz- 
ing the pitch-height information. (See, for example, Ueda 
and Ohgushi, 1987}. Band-passed versions of such signals 
are the so-called Shepard tones (Shepard, 1964). Tones with 
octave spectra have the highly unusual property that the 
choice of phases that minimizes the fourth moment is inde- 
pendent of the amplitudes of the harmonics! This fact is 
proved in the Appendix. This means that once one has creat- 
ed a minimum-fluctuation version of the waveform, subse- 

quent bandpass filtering does not change its minimum-fluc- 
tuation character, so long as the filtering introduces no phase 
distortion. Further, an optimal choice of phases is easy to 
describe: It is simply to let all phase angles be -- n/2, mak- 
ing a series of sine components. This was actually Shepard's 
original choice. In the Appendix it is shown that there is an 
additional freedom in connection with these octave spectra. 
For example, a series of cosine components with alternating 
sign gives the same fourth moment. 

Although the series ofsines and the series of alternating- 
sign cosines minimize the fourth moment regardless of the 
component amplitudes, the actual value of the fourth mo- 
ment, and of the other fluctuation statistics too, depend 
upon the amplitudes. These values are given in MPFET a for 
the case that all octave harmonics have the same amplitude, 
for overall ranges of 2, 3, 4, 5, or 6 octaves. 

C. Other equal-amplitude spectra 

Recently, Plomp (1989) demonstrated some equal-am- 
plitude spectra with interesting implications for studies of 
pitch and timbre. The phases for minimum fluctuation arc 
given in Table II. The first two columns are for bell tones 
that have been "regularized" by forcing inharmonic bell 
spectra to be harmonic. The column labeled "minor" is a 
choice of harmonic numbers to simulate a traditional bell, 
the column labeled "major" is a choice of harmonics that 
resembles the new bells based upon a major chord (Lehr, 
1987). 

The third column of Table II is for a tone that resembles 

a pipe organ sound, probably because of its strong octave 
cue.' Successive harmonics are separated by more than 1/3 

TABLE II. Equal-amplitude signals: pitch and timbre studies. The first 
three columns give phases that minimize the fourth moment for spectra, 
idealized from musical instrument tones, used in timbre studies. The four 
columns to the right give phase angles for spectra with missing fundamen- 
tals. For those harmonics where no phase is given the amplitude is zero. 
Otherwise all amplitudes are the same. 

Bells Pipe 
major minor organ 

Harmonic Phases(radians) N=5 N=6 N=7 N=7 

I 0.000 
2 0.000 4.988 0 0 0 

3 0.585 7rr/4 tr 0 

4 4.881 1.126 3•r/2 2•r/3 0 
5 3.164 0.000 •r/4 2rr/3 •r 

6 3.452 4.921 •r •r •r 

7 0 0 

8 4.322 3.538 •r 

9 

10 0.003 1.733 

12 5.548 5.548 

15 5.363 

16 4.303 

20 4.606 

24 2.760 2.759 

0 

5.958 
1.368 

0.887 

4.888 

5.960 

3.142 

Check 15.822 20.010 27.768 9•'/2 10•r/3 3•r 22.203 

Fourth 1.787 2.251 1.691 !.660 1.694 1.520 1.590 
Crest 1.961 2.128 1.803 1.698 i.719 1.556 1.725 

R•, 1.222 1.482 1.247 i.201 1.215 1.074 1.214 

octave so that no more than one harmonic lies in any critical 
band. 

The remaining columns, to the right in Table II, show 
phases that minimize fluctuations for periodic tones with 
miss!ng fundamentals. A large number of missing-funda- 
mental tones can be created using the narrow-band results to 
be described below. However, a few important cases do not 
qualify as narrow band and these are the ones that are given 
in Table II. These, together with the cases given for narrow 
bands, are an adequate base for equal-amplitude missing- 
fundamental experiments, such as those of Singh (1987), 
Tomlinson and Schwartz (1988), or Zatorre (1988). 

D. Bright and dark tone colors 

A signal with many harmonics of equal amplitude has a 
bright (or buzzy} tone color. More natural sounding tones 
have harmonics that decrease in amplitude with increasing 
harmonic number. Amplitudes that decrease as the inverse 
qth power of the harmonic number form a common idealiza- 
tion. If amplitudes decrease as the inverse first power of the 
harmonic number (q = 1 }, the spectrum decreases at a rate 
of approximately -- 6 dB/oct. Such a spectrum is still rather 
bright in comparison with the sounds of musical instruments 
and speech. The latter are better represented by q = 2 or 
q = 3, approximately -- 12 and -- 18 dB/oct, respectively. 
Table IlI shows phase angles that lead to minimum- fluctu- 
ation waveforms for q equal to 1, 2, or 3. 

For q equal to 2 or 3, there is a quite general optimiz- 
ation rule. The optimum phase angles are given by the se- 
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TABLE III. Wideband spectra with uniformly-decreasing amplitudes. 
Phases that minimize the fourth moment for amplitude spectra having har- 
momcs that decrease as the inverse cube ( - 18), the inverse square 
( - 12), or the inverse first power ( - 6) of the harmonic number. Where 
no phase is given for a harmonic the amplitude is zero. 

N 5 5 10 16 5 10 20 
dB/oct. - 18 - 12 -- 12 - 12 --6 --6 --6 

Harmonic Phases (radians) 

I 0 0 0 0 0.000 0.000 0.000 
2 0 0 0 0 5.581 5.750 5.954 
3 z' •r z' •r 2.228 2.393 2.652 
4 •r •r •r •r 3.213 3.504 3.566 
5 0 0 0 0 6.198 0.677 1.187 
6 0 0 4.482 5.189 
7 rr •- 6.095 0.327 
8 •r •r 2.594 3.282 
9 0 0 5.224 1.133 

10 0 0 1.318 3.135 
1 I •r 5.723 
12 •' 2.573 
13 0 5.150 
14 0 1.883 
15 •r 4.589 
16 •r 0.269 
17 3.891 
18 0.812 
19 2.450 
20 5.174 

Check 2z- 2•r 4rr 8•r 17.220 32.037 58.941 
Fourth 1.464 1.407 1.393 1.393 1.376 1.262 1.203 
Crest 1.515 1.519 1.537 1.520 1.354 1.345 1.349 

R• k 0.963 0.894 0.884 0.879 0.945 0.916 0.909 

quence 0,0,•r,•r,0,0,•r,•r .... for successive harmonics, begin- 
ning with the first. This corresponds to the series: cos, 
cos, - cos, - cos ..... According to the phase freedom rules, 
this sequence is equivalent to the sequence of alternating 
trigonometric functions: sin, cos, sin, cos .... To find the opti- 
mum waveform with a finite number of harmonics, one sim- 
ply truncates the sequence as needed. This procedure works 
for any number of harmonics greater than 3. It also works for 
nonintegral values of q greater than some value, approxi- 
mately equal to 2. This optimization rule is a generalization 
of our experience? we have not yet been able to prove it. 

The alternating cosine-sine series, which works so well 
for q equal to 2 or greater, fails badly for the case of a flat 
spectrum. For example, for an equal-amplitude spectrum 
with the first ten harmonics, the alternating cosine-sine se- 
ries gives a fourth moment of 4.450 and a crest factor of 
2.802. These compare unfavorably with the averages for ran- 
dom-phase waveforms given in Figs. 1 and 2. For a larger 
number of equal-amplitude harmonics, the series with alter- 
nating phases compares even more unfavorably. As in the 
case of constant phase, the fourth moment of a signal with 
alternating phases increases linearly with the number of 
components. This point is discussed further in the Appen- 
dix. 

than the center frequency of the band. In the case of narrow- 
band signals, the fourth moment of the waveform is equal to 
3/2 times the fourth moment of the envelope, as shown in 
Appendix B of Hartmann and Pumplin (1988). Therefore, 
the envelope phase rules (deBoer, 1961 ) apply to the wave- 
form fourth moment: (1) One can shift the phase of each 
harmonic by an amount that is proportional to the harmonic 
frequency (simply a time shift), and (2) one can shift all the 
phases by a constant amount. Both kinds of shift leave the 
fourth moment invariant. For wideband signals, only the 
first invariance holds. Phases that lead to minimum power 
fluctuations for narrow-band signals having three to ten 
equal-amplitude harmonics are given in Table IV. 

The fact that the fourth moment is tied to the envelope 
fourth moment means that the case of narrow bands differs 

in two rather important respects from the case of wide bands. 
First, a narrow-band solution that minimizes the fourth mo- 
ment can be translated rigidly along the frequency axis and 
still maintain its minimizing character. For example, Table 
IV shows the solution that minimizes the fourth moment for 

a waveform consisting of harmonics 3,4,5,6,7. Because of the 
generality of narrow-band signals, the user can legitimately 
translate this solution along the frequency axis to any other 
central component greater than 4, for example, to the case of 
harmonics 99, 100, 101,102, and 103. Both cases are narrow 
band; the minimizing phase solution for one case is a mini- 
mizing phase solution for the other. The crest factors for 
these two cases will, however, be different. One expects that 
the crest factor will be larger for the signal centered at har- 
monic 101, but it will not be much larger. 

Second, for narrow-band signals, there are two phase 
angles, instead of one, that are arbitrary so far as the fourth 
moment is concerned. The time-translation freedom ac- 

counts for one of these, and the other arises from the fact that 
the fourth moment is not changed by adding a constant to all 
the phases (see the Appendix). Therefore, instead of finding 

TABLE IV. Narrow-band equal-amplitude signals. Phases that minimize 
the fourth moment for narrow-band signals with equal-amplitude harmon- 
ics, for numbers of harmonics from 3-10. 

N 3 4 5 6 7 8 9 10 

Harmonic Phases (radians) 

2 0.000 0.000 

3 5.498 5.523 0.000 0.000 

4 1.571 2.939 5.760 5.837 0.000 0.000 

5 4.815 5.236 1.621 6.200 6.010 0.000 0.000 

6 1.571 6.202 1.850 4.583 6.054 6.078 

7 4.189 0.729 1.611 5.240 0.436 4.740 

8 4.053 5.474 0.396 0.002 4.064 

9 0.882 2.618 3.732 0.047 

10 4.590 0.640 2.552 6.077 
I1 3.792 5.537 2.235 
12 1.140 6.029 
13 3.919 2.411 
14 4.277 

III. NARROW-BAND SIGNALS 

A signal is classified as narrow band if the full band- 
width (highest frequency minus lowest frequency) is less 

Check 7.069 13.277 16.755 18.441 20.608 23.279 23.372 35.959 
Fourth 1.833 1.781 1.740 1.917 1.631 1.629 1.539 1.635 
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isolated holes in the space of phase angles, the algorithm 
finds trenches. As one moves along the bottom of a trench, 
the fourth moment is unchanged, and therefore, a procedure 
that simply minimizes the fourth moment is inadequate to 
find a single set of optimum phase angles. The features of 
narrow-band signals are discussed further in the Appendix. 

We used this extra degree of freedom to advantage by 
obtaining a small sixth moment. Starting at a random loca- 
tion in space, we used the gradient of the fourth moment to 
fall into a trench. Then, we walked along the bottom of the 
trench until we found the point of smallest sixth moment. 
This optimized calculation was used to find the phase angles 
for equal amplitudes and narrow bands given in Table IV, 
and in two extended tables in MPFET, 3 Tables IVA and 
IVB. In Table IVA, the number of harmonics goes from 
N = 11 through 17. Table IVB gives phases for N = 21, 24, 
31, 36, and 48 harmonics. For each value of the number of 
harmonics in the spectrum, N, the tables show the solution 
for the smallest harmonic numbers that satisfy the narrow- 
band requirement. However, as noted above, the solutions 
can be translated along the frequency axis to find other 
waveforms with a minimized fourth moment. The waveform 

that results from this translation will not, however, have the 
minimized sixth moment. The minimized sixth is peculiar to 
the particular band of harmonics used for our calculation. 

When the frequency range of the narrow-band signal is 
translated, the sixth moment and higher moments are not 
expected to become very large. The fact that the fourth mo- 
ment is minimized tends to restrain the higher moments. 
However, higher moments, such as the crest factor may be- 
come large enough that it is possible to find lower values. For 
example, Preeee and Wilson (1988) found a crest factor as 
low as 1.84 for a waveform with five harmonics, numbers 
51-55. Translating the waveform from Table IV with N -- 5 
leads to a crest factor of 1.90. The waveform from Table IV, 
of course, has a smaller fourth moment, 1.74 vs 1.85. 

IV. SIMPLE WAVESHAPES--DISTORTED 

Simple wideband waveforms with geometrical shapes 
that are easy to describe are created by electronic function 
generators; the square wave and the triangle wave are exam- 
ples. This section gives phase angles that minimize the power 
fluctuations, as measured by the fourth moment, for signals 
having the power spectra of these simple waveforms. Al- 
though the shapes of these optimized waveforms are quite 
different from their geometrically simple ancestors (we call 
them pseudowaveforms below), informal listening tests in- 
dicate that the optimized waveforms sound quite similar to 
their ancestors, as would be expected from Ohm's phase law. 
Perceptible consequences of the optimization are subtle. 

A. The pseudotriangle wave 

The power spectrum of the triangle wave consists of all 
odd harmonics, with levels decreasing at a rate of -- 12 
dB/oct. The phase spectrum can be described most simply 
by saying that the triangle is the sum of harmonics that are 
sine functions with alternating signs. The fourth moment is 
1.8, the crest factor is V3( --- 1.732), and the relative peak 

factor is 3x/•-2( -- 1.225). Numerical calculations with the 
algorithm found that the waveform that has the same power 
spectrum and minimum fluctuation is simply the sum of co- 
sine functions with alternating signs; i.e., it is identical to the 
triangle except that the cosine function always replaces the 
sine function. The fourth moment is W= 1.2956, the crest 
factor is 1.2861, and the relative peak factor is 0.90942. A 
plot of this wave, together with a triangle wave having the 
same power, is shown in Fig. 3. 

B. The pseudo-half-wave 

The half-wave-rectified sine has no odd harmonics ex- 

cept for the first. It can be represented by the Fourier series, 

x = 1 + 1 sin(cot) 2_ • • cos(ncot), T/' 2 T/' n • 2,4,6,... /•2__ ] 
(4) 

where co ---- 2zr/T. 

Figure 4 was made by keeping terms n = 2,4 ..... 24 in the 
sum. Because the dc term (n = 0, having a value of 1/zr) has 
been omitted from the figure, the half-wave has zero average 
value, unlike a true half-wave rectified sine. The fourth mo- 

ment of the half-wave with zero average is 1.741, the crest 
factor is 1.767, and the relative peak factor is 0.9205. 

Numerical calculations with the algorithm to minimize 
the fourth moment find that the optimized waveform is giv- 
en by the series 6 

1 sin(ncot). (5) x(t) = I sin(cot) 2 • n 2 _ 2 •r ,_ 2,4,•.. 1 

The result is the peculiarly slanted waveform shown in 
Fig. 4 along with the half-wave. Its fourth moment is 1.729, 
the crest factor is 1.517, and the relative peak factor is 1.072. 
The relative peak factor is actually higher than that for the 
undistorted half-wave. 

C. The pseudopulse waveform 

1. The simple pulse 

A pulse waveform has two possible values, high and low. 
An example is the•xluar• wav•, wh•r• t• uu•y L•u, is• 
p = 1/2. For other values of the duty factor, p (p < 1 ), there 
is finite average value in the waveform. If this dc component 
is removed then the fourth moment is given by 

W= l/[p(1 --p)] -- 3. (6) 

The crest factor is given by 

FIG. 3. The triangle wave and the pseudotriangle. Both waveforms have the 
same power spectrum, consisting of harmonics 1,3,...,23. The pseudotrian- 
gle has the smallest possible power variance. 
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FIG. 4. The half-wave and the pseudo-half-wave. Both waveforms have the 
same power spectrum, consisting of harmonics 1,2,4,...,24. The pseudo- 
half-wave waveform has the smallest possible power variance. 

c=x/(1-p)/p, for p<0.5, 

C= x/p/(1-p), forp>0.5, (7) 
and the relative peak factor is 

R•ak = 1/x/8p(1 --p). (8) 
The pulse wave can be written as a Fourier series, a sum 

over harmonics, n, of functions that are all cosines, having 
amplitudes given by 

A, = (l/n) sin(nprr). (9) 

By convention, we let the amplitude for each harmonic be 
given by the absolute value of Eq. (9) and let the phase be 
either 0 or 180 deg depending upon whether the sine func- 
tion in Eq. (9) is positive or negative. 

If the duty factor p is the reciprocal of an integer, then 
harmonics that are integral multiples of that integer have 
zero amplitude. For example, if p = 1/3, then the third, 
sixth, ninth .... harmonics are missing from the power spec- 
trum. 7 

2. Application of the algorithm 

For every pulse waveform, with a given duty factor, 
there is a pseudopulse with a minimum fourth moment. To 
find the pseudopulses, we proceeded, as for other pseudo- 
waveforms, by starting with the power spectrum, here given 
by Eq. (9), for a finite number of harmonics. We use Pum- 
plin's algorithm to find the phase angles corresponding to 
the minimum-fluctuation waveform. Our study concentrat- 
ed on pseudo-pulses where the parent pulse waveform had a 
duty factor of the form 1/integer. The application of the 
algorithm led to a number of surprises described below. 

First, it is evident that the fourth moment and the crest 

factor of the square wavep = 1/2 are already as low as possi- 
ble; both are equal to one. What also appears in our calcula- 
tions, though it is not apriori evident, is that the fourth mo- 
ment of a pulse with p = 1/3 is also as low as possible, 
W = 3/2. 

For other values of the duty factor, of the formp = 1/in- 
teger, it is not hard to find pseudopulses with fourth mo- 
ments that are less than the fourth moment of the corre- 

sponding pulse. Table V gives the phase angles that minimize 
the fourth moment forp = 1/4, and 1/7, when the pulse is 
represented by 60 Fourier components. Blanks appear in the 
table where phases cannot matter because the amplitude is 
zero. The table includes the fourth moments of the wave- 

forms, and also (in parentheses) the fourth moments for the 
undistorted original pulses. The comparison shows that 

minimization becomes increasingly important as p de- 
creases, as would be expected: Pulse waveforms are the most 
spiky whenp is small. Tables forp = 1/5, 1/6, 1/8, and 1/10 
appear in MPFET. 3 

Table V does not include crest factors or relative peak 
factors. It is not clear how to deal with these measures of 

fluctuation for a pulse that is represented by a finite number 
of Fourier components. Attempting to represent the discon- 
tinuity in the pulse waveform by a Fourier series with a finite 
number of terms leads to Gibbs phenomena, which are 
damped oscillations at the points of discontinuity. These os- 
cillations distort the calculated values of extrema that deter- 

mine the crest factor and relative peak factor. 
Figure 5 shows one period of the pseudopulse, with 

minimized fourth moment, computed from the entries in 
Table V forp = 1/4. This waveform is typical of one class of 
pseudopulses. For this class, there is no hint of the original 
duty factor. The function is extremely ragged, as though the 
jolts that occur at the two discontinuities of the original 
pulse are spread out over the entire period. The minimized 
solution is stable with respect to the number of components. 
If, for example, the number of harmonics is increased to 256, 
then the first 60 phases are essentially the same as in Table V. 
The waveform is essentially the same too. The only change is 
that all parts of the waveform acquire small rapid oscilla- 
tions representing the higher Fourier components. 

3. City-scapes 

A second class of minimum-fluctuation pseudopulse is 
the city-scape. We define a city-scape waveform as a series of 
rectangles of different heights, but all of the same width: 

x(t) =C O , for 0<t<r, 

x(t) = C•, for r<t<2r, (10) 

for (M--1)r<t<T, 

TABLE V. Pseudo pulse. Phases for pseudopulse waveforms made from 60 
harmonics of pulse waveforms with duty factors 1/4 and 1/7. Phases and 
check sums are in radians, entries are blank where the amplitude is zero. 
The fourth moment is given for the pseudopulse; the fourth moment for the 
pulse follows in parentheses. The table should be read from left to right, top 
to bottom. 

Duty factor 1/4, Check = 135.940, Fourth = 1.2846 (2.3333) 

0.000 6.217 3.014 3.008 5.823 1.349 2.631 4.509 
1.002 1.036 4.328 3.021 0.993 0.098 3.644 
3.294 0.636 4.547 3.762 1.482 6.086 4.676 3.170 
0.764 0.294 4.174 2.572 1.212 6.060 3.600 
3.340 0.960 5.053 4.473 2.324 6.060 6.060 3.402 
0.616 0.942 4.442 1.591 2.259 5.338 2.077 

Duty factor 1/7, Check = 158.487, Fourth = 1.1094 (5.1667) 

0.000 5.097 1.468 2.685 5.368 4.099 0.951 6.139 2.481 
3.695 0.128 5.051 1.904 0.897 3.493 4.704 1.177 5.995 

2.862 1.939 4.505 5.711 2.235 0.646 3.826 2.981 
5.517 0.430 3.305 1.568 4.799 4.026 0.243 1.427 4.394 
2.467 5.786 5.078 1.249 2.414 5.518 3.318 0.512 
6.146 2.245 3.381 0.428 4.046 1.580 0.996 3.253 4.326 
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FIG. 5. The pseudopulse with 25% duty factor, computed from 60 compo- 
nents with phases given by Table V. The pseudopulse has the same energy as 
a pulse that has values + I and -- 1, offset so that the average value is zero. 

where •-is some integral fraction of the period; i.e., •- = T/M. 
An example occurs for our pseudopulse with p = 1/7, as 
shown in Fig. 6. The solution corresponds to the series of 
constants {C, } equal to 3, 3, -- 4, -- 4, 3, - 4, 3. Thus there 
are M = 7 buildings in the city, with zero average height. 
For this ideal waveform, the fourth moment is 1.083, the 
crest factor is 1.155, and the relative peak factor is 0.714. The 
waveform in Fig. 6 was computed with only 60 harmonics, 
and therefore the discontinuities in the function show Gibbs 
oscillations. There are even Gibbs oscillations between 

buildings in the city that have the same height, somehow 
representing the continued influence of the original duty fac- 
tor of 1/7. 

A city-scape waveform, with M = 3 buildings, is the 

0 0.2 0.4 0.6 0.• 1 

FIO. 6. The pseudopulse with a duty factor of 1/7, computed from 60 com- 
ponents with phases given by Table V. The ideal waveform has only two 
possible values, but Gibbs phenomena are everywhere here. There is no 
fragmentation. The pseudopulse has the same energy as a pulse that has 
values + 1 and -- l, offset so that the average value is zero. 

minimum-fluctuation solution for the case p = 1/3. This 
case has the peculiar property that any choice of the three 
constants, so long as they add up to zero, gives the same 
spectrum as the p = 1/3 pulse (which corresponds to 
C1 = C2 = -- Co/2). Further, any choice of the constants 
gives the same fourth moment ( W= 1.5). 

The phases in MPFET 3 forp = 1/6 also correspond to a 
city-scape, as shown in the figure in MPFET. 3 That wave- 
form shows the phenomenon of"city-scape fragmentation." 
Instead of having M = 6 buildings, the waveform has 12. 
The fragmentation factor is 2. 

The fragmentation factor must be an integer. This can 
be proved simply by looking at the zeros of the power spec- 
trum. A pulse with duty factor ofp = 1/œ has a power spec- 
trum with zero power at harmonic numbers L,2L,3L ..... It is 
not hard to show that a city-scape with M buildings has a 
power spectrum with zeros at harmonic numbers M,2M, 
3M, .... Therefore, the spectral zeros of pulse and city-scape 
are the same if M = L. 

Suppose now that one wants to make a city-scape with 
twice as many buildings. The spectral zeros needed to make 
this waveform are at harmonic numbers 2M, 4M, 6M ..... All 
of these zeros are actually present in the spectrum for the 
pulse with duty factor p = l/L, where L = M. The same 
argument holds good if one wants to multiply the number of 
buildings by any integer. The spectrum of the pulse allows 
one to fragment the city scape in this way. If however, one 
wants to multiply the number of buildings by a factor that is 
not an integer, then the set of zeros that are available in the 
spectrum for a pulse with duty factor p = 1/L (L = M) is 
not adequate to provide all the zeros that one needs to make 
the city-scape. In particular one cannot even find the lowest- 
frequency zero. 

The minimum-fluctuations solution given in the 
MPFET 3 forp = 1/10 is also a city-scape. In this case, the 
fragmentation factor is 4. The possibility of very large frag- 
mentation factors raises an interesting problem in the study 
of city-scapes. At some point the fragmentation may become 
so extreme that one cannot recognize the difference between 
a city-scape and some other ragged waveform. Or possibly a 
city-scape might be recognized as such only for a large num- 
ber of Fourier components in the spectrum. 

The discovery of the low-fluctuation city-scape wave- 
form raises other questions that are beyond our present ana- 
lytical and computational capabilities. We know that city- 
scapes frequently arise as low-fluctuation solutions. For 
example, although our solution in MPFET 3 for p = 1/5 is 
not a city-scape, we have discovered a waveform with a 
fourth moment that is almost as small that is a city-scape. 
We cannot predict when the optimum solution will be a city- 
scape and when it will not. 

D. The pseudosawtooth 

In their classic study of monaural phase perception 
Plomp and Steeneken (1969) used a spectrum with the first 
ten harmonics with harmonic levels decreasing at --6 
dB/oct. If the waveform is made by summing sine waves 
(phase of 270 deg in our notation), then the resulting wave- 
form is a sawtooth, and discarding all but the first ten har- 
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monics is equivalent to low-pass filtering a sawtooth wave- 
form. 

Plomp and Steeneken used four different sets of phase. 
They particularly emphasized that waveforms generated 
with alternating cosine and sine series (0 and 270 deg) sound 
different from the low-passed sawtooth. Here, we would 
simply note that the alternating cosine-sine series does not 
have the lowest power fluctuations (fourth moment or crest 
factor) for this spectrum. Minimum power fluctuations oc- 
cur for the phase angles given in Table III with N = 10 and a 
spectral envelope decreasing at - 6 dB/oct. The waveform 
is shown in Fig. 7. It may be compared with waveforms given 
by Plomp and Steeneken in their Fig. 1. Of their four wave- 
forms, number 3 has the smallest fourth moment and crest 
factor, respectively, 1.507 and 1.708. 

V. CONCLUSION 

Using Pumplin's algorithm for minimizing moments of 
a waveform, we have found optimized periodic waveforms, 
having minimum power fluctuation, for a variety of power 
spectra. Minimum fluctuation waveforms were found by 
choosing the phases of the harmonics to minimize the fourth 
moment. We considered both wideband and narrow-band 

spectra. 
Among the wideband signals were flat spectra and spec- 

tra decreasing at -- 6, -- 12, and - 18 dB per octave. Also 
included were octave spectra (as used in making Shepard 
tones), regularized bells and pipes, and the pseudowave- 
forms corresponding to triangle, half-wave, pulses, and saw- 
tooth. For signals with a spectrum that decreases at - 12 
dB/oct or faster, we found that the optimum choice of 
phases does not depend upon the number of harmonics in- 
cluded in the waveform. This fortunate result considerably 
increases the general usefulness of our calculations. When 
the power spectrum decreases at - 6 dB/oet, the optimiz- 
ation does depend upon the number of harmonics that are 
included in the waveform, but the dependence is not sensi- 

FIG. 7. The sawtooth ( heavy ) and the pseudosawtooth (light ). Two cycles 
of the waveforms are shown. Both waveforms have the same power and the 
same power spectrum, consisting of harmonics n = I - 10, decreasing in 
amplitude as l/n, as studied by Plomp and Steeneken in 1969. 

tive. An experimenter who wants an optimized waveform 
with this power spectrum would do well simply by truncat- 
ing a column from Table III. 

For narrow-band spectra special considerations apply. 
To obtain a single optimized solution, we considered the 
continuum of solutions that minimize the fourth moment 
and selected the one with the smallest sixth moment. This 

choice also led to small values of higher moments such as the 
eighth. The optimized solution has the convenient property 
that it can be translated rigidly along the frequency axis 
while maintaining the fourth moment at a minimum. In oth- 
er words, the solution for seven adjacent partials in a narrow 
band at a low frequency is also the correct solution for seven 
adjacent partials at a higher frequency. The solutions for 
narrow bands should be of particular importance in pitch 
and timbre experiments with missing low harmonics. 

Because of its extremely robust nature, Pumplin's algo- 
rithm essentially finds the answer to the question about 
which waveform has the least power fluctuation. For a num- 
ber of harmonics equal to 20 or less, we are rather sure that 
no one will ever find a waveform with a smaller average 
fluctuation. s In this sense then, we claim to have found ideal 
minimum-fluctuation waveforms. Of course, one may ques- 
tion our choice of criterion, whereby the fluctuation is mea- 
sured by low-order moments such as the fourth. 

The fourth moment is a direct measure of the variance of 

the power. Therefore, the fourth moment is the best overall 
measure of fluctuation in the same way that the standard 
deviation of a distribution is the best overall indicator of the 

width of the distribution. By minimizing the fourth moment, 
our calculations ensure that the fluctuation is best mini- 

mized in an average way. For certain applications, however, 
one might be more interested in a different measure of the 
fluctuation, such as the crest factor, in the same way that one 
might choose to characterize the width of a distribution by 
the range of its outliers. 

There is, though, more to recommend the procedure of 
minimizing the fourth moment than simply the fact that the 
fourth moment is the best measure of fluctuation in the over- 

all sense. Our calculations find that by minimizing the fourth 
moment, we frequently achieve extremely low values for 
higher moments such as the crest factor. In fact, we get lower 
values of the crest factor than are found with Schroeder's 

algorithm. 
A final example will illustrate this point. Schroeder 

demonstrates his algorithm by calculating a waveform that 
has a spectrum with sixteen harmonics under a spectral en- 
velope that is a squared sine function. His waveform has a 
fourth moment of 1.539, a crest factor of 1.756, and a relative 
peak factor of 1.17. These values are considerably smaller 
than are obtained with random phases: Schroeder's algo- 
rithm works well in this case. Applying our methods to this 
spectrum, we find a waveform with a fourth moment of 
1.442, a crest factor of 1.575, and a relative peak factor of 
1.10. It is no surprise that our fourth moment is lower; we 
have found the lowest one that there is. What is surprising is 
that our procedure, without particularly trying to do so, has 
led to smaller values of the crest factor and relative peak 
factor. 
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Although we have found the key to minimum-fluctu- 
ation waveforms, it is worth remembering that a minimum- 
fluctuation waveform may not really represent the ideal 
from the point of view of perception. Even with perfect elec- 
tromechanical transducers, a waveform still undergoes 
phase distortion as it propagates on the basilar membrane. 
(Allen, 1983; Smith etaL, 1986). For a variety ofperoeptual 
and physiological experiments, especially for broadband sig- 
nals, the ideal minimum-fluctuation waveform may be one 
that has been predistorted so as to compensate for the phase 
distortion of the cochlea. Such waveforms can be construct- 

ed based upon models of the cochlear filter. One begins with 
amplitude and phase spectra as given in our tables and multi- 
plies by the transfer function of the inverse filter. The inverse 
Fourier transform then gives the optimized waveform with- 
in the context of the cochlear model. 
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APPENDIX: ANALYTIC RESULTS FOR THE FOURTH 
MOMENT 

The fourth moment is the best overall representation of 
the power fluctuations of a signal. The optimized waveforms 
in the body of this article were found by minimizing the 
fourth moment by numerical calculation, which appears to 
be the only way to answer most of the interesting questions 
about minimum-fluctuation waveforms. However, there are 
a few results that can be obtained analytically. These are 
treated in this Appendix. 

We begin by deriving an expression that represents the 
fourth moment as a quadruple sum over the harmonics of 
the signal. From Eqs. ( 1 ) and (2) ofthebody, the unnorma- 
lized fourth moment is 

-- 1 T 

Changing integration variables and expanding the 
fourth power of the sum, we find 

-•-•= • A•A•A•A• dtcos(2•rnt+q•,) 
n.j,k.I 

X eos(2•rjt + •b i) cos(2•rkt + •b• ) 

X cos(2•r/t + •b•). (A2) 

The product of four cosine functions can be written as a 
sum of single eosines. There are eight such single cosine 
terms. Because of the symmetry of the sum, the eight terms 
can be combined into three: 

•cos(a + b+ c +d} + •cos(a + b--c--d} 

+ • cos(a + b + c -- d), (A3) 

where a is the argument of the first cosine in (A2), namely 
2½rnt + 4, and b is the argument of the second, etc. 

To obtain the fourth moment from Eq. (A2), the 
expression (A3) must be integrated. The simplification af- 
forded by the form (A3) is that the integral of a single cosine 
function is zero unless the sum of the harmonic numbers in 

its argument is zero. For example, unless there is adc com- 
ponent (zero frequency), the first term in (A3) can only 
integrate to zero because a sum of positive numbers can nev- 
er equal zero. The other two terms in (A3) select out other 
terms in the sum on harmonic numbers. 

The result of the integration is 

n.j,k,l 

+4j 

+ 35. +•.• + •cos(•. + • - •k - •t) 

+45.j+•.• cos(•. +• +• --•z)]. (A4) 
Equation (A4) is the basic equation from which all sub- 

sequent results will be derived. There are three kinds of 
terms in the sum, with three ditfcrent requirements on the 
harmonic number indices n,j, k, and L The requirements are 
enforced by the Kronecker delta function, which is unity if 
the integer indices separated by the comma are the same, and 
is zero otherwise. The first terms in the square brackets are 
zero unless there is a de component in the waveform. Only 
then can four harmonic numbers add up to zero. In what 
follows we shall assume that the de component has been 
removed from the waveform. Therefore, the harmonic num- 
ber indices are all positive integers. The second kind of terms 
are those where two pairs of indices must add in a way to be 
equal. We shall call these the "pairs" terms. Finally are the 
kind of terms where the sum of three indices must equal a 
fourth. We shall call these the "3-1" terms. 

1. Two components 

The general waveform with two sine harmonics is 

f(x) = cos(2•rpt) + a cos(2rrqt + •), (A5) 

wherep and q are integers with q greater than p, and a is any 
real number. 

The "3-1" terms can contribute to the sum only if q is 
equal to three times p. If this is not the case, then only the 
"pairs" terms contribute. There are two terms where all in- 
dices are equal, and four where only the sums of pairs are 
equal. Therefore, the unnormalized fourth moment is 
]( 1 + an+ 4a2), independent of phase •. The fourth mo- 
ment, normalized by the square of the average power, is giv- 
en by 

[V= •(1 + 4a 2 + a4)/(1 + a:) :. (A6) 
It does not matter which of the two harmonies is the larger, 
the expression for [V is unchanged if a is replaced by 1/a. 
The maximum value of/4' ( equal to 9/4) occurs when a = 1. 
Because hVis independent of phase •, one cannot minimize 
[V to determine an optimum value of 0•, per Pumplin's algo- 
rithm. 

In the exceptional case, q is equal to three timesp. Then 
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the contribution from the "pairs" terms are the same as be- 
fore, but there is a single "3-1" term which introduces a 
phase dependence. The normalized fourth moment is then 
given by 

IV= [2(1 + 4a2 + a 4) + 2a cos(q•) ]/(1 +a2) '. 
(A7) 

In this case Pumplin's algorithm does find the correct solu- 
tion, namely 4 = 180 deg. This solution also gives the lowest 
crest factor for the case of a 3 to 1 frequency ratio. 

But, the case of two harmonics is not particularly inter- 
esting because the fluctuation is not strongly dependent on 
the phase angle. For instance, in a waveform with first and 
second harmonics of equal amplitude, the worst case occurs 
when the two harmonics are in phase ($ = 0) and the crest 
factor is 1.414. In the best case (• = 90 deg) the crest factor 
is 1.245, only 12% smaller. Numerical experiments with 
other pairs of consecutive harmonics show that the improve- 
ment on optimization is even smaller than 12%. 

2. Narrow bands 

Equation (A4) gives some insight into the important 
case of narrow bands. For a narrow band, the highest fre- 
quency is less than three times the lowest frequency: Thus, 
there is no way that three harmonic numbers can add up to 
equal a fourth harmonic number and the "3-1" terms do not 
contribute. By definition, a narrow band cannot have adc 
component, so the first term cannot contribute either. 
Therefore, only the "pairs" terms contribute to the fourth 
moment. 

Two features of the narrow-band case immediately be- 
come apparent. First, the band can be translated rigidly on 
the frequency axis because if a constant is added to all the 
integers n,j, k, and i, the equalities among sums of pairs are 
unchanged. Second, it is clear that a constant can be added to 
all the phase angles because a common phase cancels in the 
argument of the cosine in the "pairs" terms. These are the 
features of the translatable "trenchlike" solutions described 

in Sec. III. These features actually occur for any spectrum 
where the "-1" terms do not exist. Except for narrow bands, 
however, such spectra are rather peculiar cases. For in- 
stance, if one begins with harmonics I and 2, then the lowest- 
order three-component signal has harmonics 1,2,7. The next 
is 1,2,7,8; then 1,2,7,8,13, and so on. Allowed spectra have 
large gaps. 

3. Equal amplitude, common phase 

If all amplitudes are equal (A, = I for all n<N) and all 
phases are the same (4J, = d for all n) then some simplifica- 
tions occur in Eq. (A4): All cosine factors in the "pairs" 
terms become equal to 1, and all cosine factors in the "3-1" 
terms become equal to cos(2d). Evaluating the fourth mo- 
ment then becomes a matter of counting the number of terms 
of each type, for a given number Ar of nonzero harmonics. 
For instance, for the "pairs" type, we must count the number 
of ways that one can choose two numbers from a set and have 
their sum equal the sum of two other numbers from the set, 
where the set contains the integers from 1 to N inclusive. 

Any integer can be used any number of times. 
Normalizing by the square of the power, which equals 

N 2/4, we find 

W= 1 (N' +-•-)+ (N-- 1) (N-- 2) cos(2½j). N 3N 

(A8) 

Whatever the angle •, the moment IV continues to grow, 
linearly with increasing N for large N, as shown in Fig. 1. 
The worst choice is • = 0, corresponding to a waveform that 
is a sum of cosines. The best choice is • = -- rr/2, corre- 
sponding to a sum of sines, but that does not make it a good 
choice. For large N, any fixed-phase waveform has a larger 
fluctuation than the average random-phase waveform. 

4. Octave spectra 

This section proves that when all the harmonics of a 
tone are octaves of a fundamental, then the fourth moment 
of the tone is minimized by phases that are independent of 
the amplitudes of the harmonics. A result of this fact is that if 
an optimized waveform is passed through a dispersionless 
filter, or other process that alters only the spectral envelope, 
then it remains an optimized waveform. 

The independence comes from the fact that the octave 
spectrum has such large gaps that only a few combinations of 
indices satisfy the requirements imposed by the Kronecker 
deltas. There are no "pairs" terms with any angular depen- 
dence, and the "3-1" terms are of a simple form. The fourth 
moment is given by 

x•= 3 • 4 3 2 2 3 •, 2 8 A.+ • A•A•+ A•A2.A• 
Xcos(2• + •2,• -- •4,)- (A9) 

Equation (A9) shows that there is only a single kind of 
term that includes phases. Like any fourth power, the above 
function must be positive, and therefore, the function is 
made as small as possible by making such terms as negative 
as possible. This occurs when the sum of the phases in paren- 
theses is rr. One solution is to let all phase angles be equal to 
-- rr/2, which corresponds to summing sine waves. There 

are other solutions too: for example, alternating phases 
{0,rr,0,•r,...} is a solution corresponding to a series of cosines 
with alternating sign. The general solution has the form 

{qb,,qfi2,qb,,•s .... }---- (rr/2){l,!,l,1,...} 

+/){1,- 1,1,- 1,...}, (AlO) 

where D is an arbitrary number. 
The actual value of the fourth moment depends upon 

the amplitudes. If all amplitudes are equal up to harmonic 
number N and zero thereafter, then the normalized fourth 
moment becomes 

W=•[(2N2--5N+8)/N•], for N>I. (All) 

Equation (A9) shows that the phase dependence arises 
from a minimum of three successive octave components with 
nonzero amplitudes. For an octave spectrum with gaps, e.g., 
harmonics 1,2,8,16,64, the fourth moment has no phase de- 
pen&nee at all. 
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5. Equal amplitude, random phases 

Equation (A4) can be used in a simple derivation of the 
ensemble-averaged fourth moment for the case of equal am- 
plitudes and random phases. The ensemble average of each 
cosine term in (A4) is zero unless there is some special rela- 

tionship among the indices of the sum. Fo,r example, in the 
quadruple sum over n, j, k, and l there is the special case 
where all indices are equal. Then the cosine of the phase 
differences in the "pairs" terms is one and does not average 
to zero. 

There is no special relationship that permits the "3-1" 
terms to contribute; therefore they always average to zero. 
The finite contributions all come from the "pairs" terms, 
and the most important of these occur when indices are 
equal in pairs. Therefore, the unnormalized fourth moment 
becomes 

= I + I -- 1 . (A12) (7) , 
The first term in the large parenthesis comes when f = n and 
l =j. The second term comes when f =j and 1 = n. The 
third term corrects for the fact that by adding up the first and 
second terms we have double counted. the case where all 
indices are equal. 

The sums are easy to do. The first two are N:, and the 
third is N. Then, normalizing by the square of the signal 
power, we find that the ensemble-averaged fourth moment is 

(W) = 3[! -- I/(2N) ]. (AI3) 

This expression agrees with the fourth moment derived in 
Appendix A of Hartmann and Pumplin (1988), but the deri- 
vation here is giropier, given Eq. (A4). It agrees well with the 
square symbols shown in Fig. 1, found by averaging the 
fourth moments from 10 000 waveforms. The large N limit, 
W= 3, is just what is expected from the central limit 
theorem. When the number of components becomes large, 
the distribution ofinstantanenus values becomes a Gaussian. 
The fourth moment of a normalized Gaussian is 3. 

6. Equal amplitude, alternating phases 

The waveform composed of alternating sine and cosine 
functions, used by Plomp and others, is a special case of the 
more general "alternating-phases" waveform. We have de- 
rived analytical results for the case of alternating phases for 
spectra that are similar to those in Sec. A 3 above, namely all 
harmonics have the same amplitude up to harmonic number 
N, and beyond that number all amplitudes are Zero. The 
technique is straightforward: We write Eq. (A4) for the spe- 
cial case of two alternating phase angles, and set the deriva- 
tives with respect to those two variables equal to zero. The 
resulting equat!ons have several solutions and we then test to 
see which leads to the smallest fourth moment. 

In the end, we find that the alternating phases that mini- 
mize the fourth moment depend upon whether N is even or 
odd and also upon the range of N. For Neven and N< 12, the 
lowest fourth moment, for alternating phases, occurs when 

{41 ,•2,•3,•4,"') = {rr/2,0,rr/2,0,...), (A14) 

corresponding to an alternating sine/cosine series. The 
fourth moment is 

W= (N 2 - 2N+ 9)/(2N). (AI5) 

For N odd and N•<7, the smallest fourth moment, for 
alternating phases, again occurs for the alternating sine/co- 
sine series, and the fourth moment is 

W= (N 3 -- N 2 + 4N-- 1)/(2N2). (AI6) 

For larger values of N (larger than 12 or 7) the optimum 
pair of alternating phases does not correspond to an alternat- 
ing sine/cosine series. The analytic expression for the fourth 
moment also becomes complicated. Of interest, though, is 
the fact that in the limit of large N, the fourth moment grows 
linearly with N with a slope of 4/9. This can be compared 
with the large-N behavior for the best common phase, 
namely sine phase (4 = rr/2), where the slope is 2/3. 

Thus, for large N, the fluctuation for the best alternat- 
ing-phase signal is smaller than the fluctuation for the best 
single-phase signal. But for large N, even the best alternat- 
ing-phase signal is bound to be worse than the average ran- 
dom-phase signal, where the fourth moment goes to a finite 
limit of 3. 

For a waveform with a fundamental and a third harmonic, the minimum 
peak factor and the minimum fourth moment actually both occur when 
the third harmonic phase angle is 180 deg with respect to the fundamental 
phase, regardless of the relative amplitudes of the harmonics. Naively ap- 
plying Schroeder's algorithm, one finds that the relative phase depends 
upon harmonic amplitudes, which is incorrect. If the two amplitudes are 
equal, that algorithm leads to a relative phase of zero, the worst possible 
choice. 

It is not hard to show that minimizing the fourth moment minimizes the 
power fluctuation. Let P be the instantaneous waveform power. The vari- 
ance in power is the average of P-' minus the square of the average P, where 
averages are computed over a period of the waveform. The average P does 
not depend upon phase angles; it depends only upon harmonic amplitudes. 
Therefore, a choice of phases that minimizes the average ofP 2 is the choice 
that minimizes the variance in power. Instantaneous power P itself is 
equal to the square of the waveform, i.e., to xa(t), given the usual assump- 
tion of a unit resistive impedance. Therefore, p2 is given by x4(t), and this 
is the quantity that must be minimized. 

aSee AlP document number PAPS-JASMA-90-1986-15 for 15 pages of 
Minimum Power Fluctuation Extended Tables (MPFET). Order by 
PAPS number and journal reference from the American Institute of Phys- 
ics, Physics Auxiliary Publication Service, 335 East 45th Street, New 
York, NY 10017. The price is $1.50 for a microfiche or $5.00 for a photo- 
copy. Airmail is additional. Make checks payable to the American Insti- 
tute of Physics. 

4 Phase freedoms were used in the construction of the tables in this article. 
Arbitrarily, we required that the phase of the lowest frequency component 
should be zero and the phase of the next lowest component should be be- 
tween 1.5•'and 2•r. Removing phase arbitrariness with a two-part conven- 
tion of this kind, enabled us to recognize equivalent minima when they 
appeared in the output of the algorithm. 

s Our calculations for "dark" signals were done for q = 2 and 3 and for all 
possible numbers ofharmonics from 3 to 50; i.e., N• = I and N z ranging 
from 3 to 50. Each calculation employed 100 starts. For q = 2, our calcula- 
tion never found a local minimum with a fourth moment less than that for 

the alternating sin, cos, sin... series. For q = 3, our calculation never found 
any local minimum at all other than the alternating sin, cos, sin...series. It 
seems evident that for q equal to about 3 or larger the fourth moment is 
dominated by the low- order harmonics so that adding higher harmonics 
to the spectrum only creates inflection points and not local minima in the 
fourth moment function. 

6 For the pseudo-half-wave, and for the pseudotriangle of the preceding sec- 
tion, we performed calculations with a finite number of harmonies with 
N• = I and N2 taking on all values between 4 and 50 (5 and 51 for the 
triangle ). Out of 100 starts, the waveform given by the pseudowaveform of 
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the text had the smallest fourth moment solution for all values of/V:. Only 
a few starts led to local minima other than the minimum of the pseudo- 
waveform. 

This argument shows that a square wave has only odd harmonics. A pulse 
with p = I/7 is reminiscent of the mythical piano in which the hammer 
st rikes the string at a point that is exactly 1/7th of the string's length. (Hall 
and Clark, 1987). 

a !n order to be confident that our lowest minimum is the global minimum, 
it is necessary to fall into all of the holes in the space. But with starting 
points that are independent and random, our confidence can only be based 
upon statistics. We have two kinds of evidence. First is simply the weight of 
numbers. If we find that many different starting points in the space all lead 
to the same few holes then we suppose that we have found all the holes. The 
second kind of evidence is based upon the size of holes. It is possible to 
estimate the sizes of holes and the way that they fill the volume of the 
space: Starting from the bottom era hole, we take steps of various lengths 
in random directions to find a set of test points. We follow the gradient at 
each test point. If it leads back into the same hole then the test point is 
counted as part of the hole volume. By this technique we learn that differ- 
ent holes have rather similar volumes. By dividing the total volume of the 
space by the volume era typical hole we find an estimate of the number of 
holes in the space, and this too helps to decide whether we have found all 
the holes or not. 
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