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The source identification method is a standard psychophysical procedure for studying the ability of
listeners to localize the source of a sound. The method can be described in terms of a statistical
model in which listeners’ responses are determined by the width and bias of an internal distribution.
This article presents a theoretical study of the method, particularly the relationships between the
average experimental observables, rms error and variability, and parameters of the internal
distribution. The theory is tested against source-identification experiments, both easy and difficult.
Of particular interest is the experimental dependence of observable statistics on the number of
sources in the stimulus array, compared with theoretical predictions. It is found that the model gives
a good account of several systematic features seen in the experiments. The model leads to guidelines
for the design and analysis of source-identification experiments. ©1998 Acoustical Society of
America.@S0001-4966~98!02712-X#

PACS numbers: 43.66.Qp, 43.66.Yw@RHD#
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INTRODUCTION

The source-identification method is an experimen
technique for studying the ability of human~or other! listen-
ers to localize the source of a sound. The method is eas
describe. The listener is in an environment with a numberN,
of sound sources. One source is caused to emit a signal
it is the listener’s task to identify the location of the sourc
The location may be identified by name, number, or by
ordinates on a prearranged scale. Over trials the listene
ceives presentations from all the sources, typically ma
times.

The source-identification method, hereafter called
‘‘SIM,’’ is especially applicable for localization experiment
in a room. Here, the experimenter may be interested in
calization as a function of the signal, or the listener, or
room itself. However, because of standing waves in
room, an experiment done with a sound source in any
location may be special and not representative of the sys
of interest. By averaging performance over a number
source locations, the experimenter achieves greater gen
ity. Therefore, SIM data are normally averaged over
source array.

The SIM is naturally modeled in terms of statistical d
cision theory~Searleet al., 1975, 1976; Hartmann, 1983b!.
The present article is primarily a theoretical study of th
model. It shows how observable variables, rms error
variability, averaged over the source array, are related to
rameters of the model internal distribution. Therefore, t
article provides a guide to the design of SIM experime
that are intended to discover the internal parameters.
article is concerned especially with the choice of the num
of sources to be used in an experiment that measures lo
ization ability over a fixed angular range.

a!W.M.H. is at the Department of Physics and Astronomy.
b!B.R. is at the Department of Audiology and Speech Sciences.
c!J.B.G. is at the Department of Mechanical Engineering at the Universit
Texas at Austin.
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The SIM experiments studied here are constrained
the following assumptions: First, it is assumed that the
lowed response set is identical with the stimulus set.
example, there might beN524 loudspeakers in front of a
listener labeled 1 through 24. After presentation of a sou
from one of the speakers, the listener must respond wit
number from 1 to 24. Next, it is assumed that the sources
equally spaced by a common angle,A, measured in degree
along a single angular dimension, for example azimuth
elevation. For definiteness, the following discussion will
couched in terms of the azimuthal dimension, but the met
is applicable to sources in any plane.

The decision theory model used for calculations bel
is one dimensional. Therefore, the model is inappropri
when the perceptual character of the localization task is m
tidimensional. It is assumed that sources are arranged
part of a circle, to be called thespan, with angular extent
G5(N21)A, and with source number 1 at one extreme a
source numberN at the other.

A SIM experiment begins with a choice of statistics
describe localization error. Searleet al. ~1975, 1976! used
the absolute value of the discrepancy between response
target. Hartmann~1983b! used the root-mean-square~rms!
error, which has theoretical advantages described below.
rms statistic is designated by the symbolD, the square root
of an average squared error, computed as follows:

D5AD25A(
k51

N

W~k!D2~k!, ~1!

whereW(k) is the fraction of the trials on which sourcek
was presented, andD2(k) is the mean square localizatio
error for sourcek. This function is given by

D2~k!5A2
1

Mk
(
i 51

Mk

~Ri2k!2, ~2!

whereRi is the listener’s response—on the scale of sou
numbers—to thei th trial on which sourcek is presented.
f
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There are a total ofMk of such trials. Equation~1! introduces
the notation whereby a bar over a symbol indicates an a
age over sources and a bar under a symbol indicates
square root of that average.

StatisticD includes both variability and constant erro
A second statistic,sI , measures only variability by computin
error with respect to the mean response. It is the square
of quantitys2 given by

s25 (
k51

N

W~k!s2~k!, ~3!

where the variability for sourcek is given by

s2~k!5A2
1

Mk
(
i 51

Mk

@Ri2R~k!#2, ~4!

andR(k) is the average response of the listener—in terms
source numbers—when a given sourcek is presented,

R~k!5
1

Mk
(
i 51

Mk

Ri . ~5!

Statistics(k) is a biased estimate of response variability th
tends to underestimate the actual standard deviation for s
sample sizes. For comparison with the variability observ
experimentally or in a Monte Carlo simulations(k) should
be multiplied byAMk /(Mk21), a factor which become
important if the number of presentations is small.

In addition to variability, there is constant error. Th
constant error,C(k), measured in degrees, is the differen
between the true location of a source,k, and the mean per
ceived location of the source,C(k)5A@R(k)2k#. It may be
positive or negative except whenk is a well-defined extreme
location. Rakerd and Hartmann~1986! noted a Pythagorea
relationship among rms error, variability, and constant er

D2~k!5s2~k!1C2~k!. ~6!

ThereforeD(k) was called theoverall error. It follows that
D25s21C2, whereC2 is an average over sources analogo
to D2 ands2. The calculations below are devoted to calc
lating these statistics, particularlyD andsI .

I. DECISION THEORY MODEL

The decision theory model for a listener’s respon
given a sound coming from sourcek, includes several basi
assumptions. The first is that the listener has an internal
ordinateu for the source positions, undoubtedly establish
visually if the sources are visible, and that the presentatio
sourcek leads to a normally distributed representation
location cues on that coordinate system. The probability d
sity that sourcek leads to internal valueu is given by

P~u!5
1

skA~2p!
e2~u2uk2bk!2/2sk

2
. ~7!

Here, parameteruk is the location on the reference co
ordinate for sourcek, andbk is a bias such that the acoustic
cues for sourcek are not centered exactly on this referen1

Bias leads to constant error,C(k), and increases the size o
the overall error,D(k).
3547 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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A key parameter is the angular standard deviation,sk ,
called thewidth of the internal distribution, or, simply, the
width. It depends on the listener, the type of sound that m
be localized, the environment in which the experiment
performed, and the position of the source. The sound ma
easy to localize~small sk), e.g., a broadband impulsiv
noise, or it may be difficult~large sk), e.g., a spectrally
sparse tone without onset transient. Normally, the purpos
a SIM experiment is to determine the width as a function
experimental conditions.

Because the width is not zero the listener makes inc
sistent responses to a given source. The width is genera
function of k because some sources are more difficult to
calize than others. In the azimuthal plane sources to left
right are more difficult than sources in front, and in the m
dian sagittal plane sources overhead are more difficult t
others.

A second assumption of the model calculation is th
responses are quantized; when a listener experiences int
coordinateu, the listener responds by choosing the sou
with referentuk that is closest tou. ~Alternatively, listener
responses on a continuum scale may be quantized in
process of recording the data.! There are two kinds of calcu
lation, terminated spanor wrapped span. For a terminated-
span calculation, the span has well-defined ends, typical
span that is much less than a complete circle. Here, the p
ability of making a particular response given a particu
source is a simple monotonic function of the distance alo
the span between the two locations. By contrast, a wrapp
span calculation includes both errors along the span and e
outside the span; it is defined in more detail below.

A. Calculations without bias

The present section examines statisticsD and sI when
there is no bias (bk50). The calculations were motivated b
the conjecture that for a given source array span, the va
of overall error,D, and variability,sI , should be insensitive
to the number of sources in the array. The logic was simp
As the number of sources is reduced the listener is less lik
to make an error because the sources are farther apart. H
ever, when the listenerdoesmake an incorrect choice, th
contribution to the overall error sum is a larger number
degrees. The conjecture thatD andsI should be insensitive to
N follows from the expectation that these two effects sho
largely cancel one another. One purpose of the calculat
below was to test that conjecture.

The dependence ofD and sI on the number of source
was tested in a computation where each source is prese
an equal number of times@W(k)51/N#. The calculation
used an analytic form for the cumulative normal function
determine the probabilities of each possible response
each possible source.

1. The small-span limit

A source array with a small span extends over a limi
range of azimuth values. Therefore, a small-span sou
identification experiment can provide the same informat
3547Hartmann et al.: Source identification method
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as a minimum audible angle experiment with the advant
that the source-identification method should be less sens
to standing waves in the environment.

When the span is small, the width may be regarded
independent of the source number, i.e.,sk becomes a con
stant,s0 . Calculations in the small-span limit are normal
terminated-span calculations. From the structure of the eq
tions it is possible to come to some general conclusio
There is reason to expect that functionD2(k) should be ap-
proximately equal tos0

2, because the second moment of
normal density is the variance. FunctionD2(k) resembles the
second moment of densityP. This is a theoretical advantag
of the rms quantitiesD andsI . However,D2(k) is not exactly
equal tos0

2, both because the formula is a discrete sum—
an integral—and because of end effects. In the limit that
width s0 becomes very small while the number of sourcesN
becomes large,D(k) approachess0 , as long ask is not close
to the edges of the source array. In those limits, the disc
sum approaches an integral, and end effects are not impo
because the distribution has little strength near the e
Also, in those limits the value ofD approachess0 because
the fraction of sources near the end becomes small, andD is
determined primarily from values ofD(k) that are away
from the ends.

A logical problem with terminated-span calculations
that when the widths0 becomes comparable to the sour
spanG, the model sometimes predicts performance tha
worse than random guessing. When this unreasonable r
occurred in calculations below, the calculations were ha
and the limiting point was noted in the graphical presentat
of the results. The random guessing limits forD and sI are
given by Eqs.~A8! and ~A12! of the Appendix, where they
are derived.

The results of the calculations are given in scaled un
normalized to either the spanG or the widths0 . Therefore,
the calculations are not immediately applicable to any p
ticular experiment, but, with a little work, they are applicab
to all particular experiments. Parameters0 is always given
in units of the span. The work of Searleet al. ~1976! sug-
gests that the internal widths0 increases in proportion to th
span. Therefore, the normalized parameters0 /G, as used
here, is a convenient choice.2

Figure 1 shows the predictions of the analytic cumu
tive normal calculation forD as a function of increasing
number of sources,N. The figure shows thatD converges to
the width whenN is large ands0 is a small fraction of the
span. For example, whens0 /G50.025, D converges to
within one percent ofs0 when there are 50 sources. Whe
s0 /G is not small,D always converges to a value that is le
than s0 . The discrepancy is caused by end effects, but
Sec. I A below. Figure 1 also shows that the expected va
of D is close to its asymptotic value~for largeN! when there
are enough sources that the spacing between the sourc
less than or equal tos0 . Theseadequate valuesof N are
indicated with a filled star.

Although Fig. 1 shows thatD/s0 decreases with in-
creasings0 , in fact, D itself increases monotonically with
increasings0 : the larger the width, the larger the rms erro
3548 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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The quantityD/s0 decreases becauseD increases less rap
idly than linearly with increasings0 .

For practical purposes, Fig. 1, and other figures in t
article, must be used iteratively to find a self-consistent
lution for the width. The experimenter begins by knowingG
and N. The experimenter measuresD. The self-consistent
calculation begins with the assumption thats05D. This
leads to a value of the graph parameters0 /G. The graph
then leads to a predicted value ofD/s0 , and hence a revised
value of s0 . Because the plots in Fig. 1 are smooth, o
expects the calculation to converge to a stable value ofs0

after only one or two iterations.
The insensitivity ofD to the number of sources is fur

ther demonstrated in Fig. 2, which showsD/s0 as a continu-
ous function ofs0 /G. The calculated value ofD varies by
less than 10% as the number of sources is varied, prov
that there are at least six sources ands0 is greater than 5% of
the span. Whens0 is greater than 20% of the span,D be-
comes extremely insensitive to the number of sources.

Parallel calculations for variability,sI , for the case of no
bias show thatsI is very similar toD, as would be expected

FIG. 1. rms error,D, expressed in units ofs0 , the width of the listeners’s
localization probability density function. StatisticD is presented as a func
tion of the number of sources in the array, assuming that spanG remains
constant. The parameter iss0 in units of the span. A filled star indicates th
value ofN where the spacing between sources is equal to the widths0 .

FIG. 2. rms error, as a function of the continuous variables0 /G, the width
of the listener’s internal distribution expressed as a fraction of the sp
Each function is cut off at the random guessing limit.
3548Hartmann et al.: Source identification method
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AlthoughsI is logically required to be smaller thanD, calcu-
lated plots ofsI vs N or sI vs s0 /G almost coincide with the
corresponding plots forD ~Figs. 1 and 2! so long as the
width is less than 10% of the span~i.e., s0 /G,0.1). The
discrepancy betweensI andD grows ass0 /G increases, but
the difference is not more than 10%, even whens0 /G is as
large as 0.5.

2. Spans approaching 180 degrees

As the source span increases it becomes more impo
to take account of the dependence of the width on sou
location. For definiteness, we continue to assume that
sources are in the horizontal plane. The dependence o
width, sk , on the angular position of the source,uk , is mod-
eled by assuming a constant difference limen for the inter
ral time difference. This model is known to capture som
but not all, of the azimuthal dependence of the width. In t
model, the localization error is inversely proportional to t
derivative of the interaural time difference with respect
angular position. For an azimuthal coordinate system, w
u50° directly in front of the listener, the interaural tim
difference is described by the Woodworth formula~1938!,

Dt5a~u1sin u!, ~8!

whereu is in radians anda is a constant equal to the hea
radius divided by the speed of sound. Differentiating w
respect tou and inverting gives

du

d~Dt !
5

1

a~11cosu!
. ~9!

Sincesk is proportional toduk ,

sk5
2s0

11ucosuku
, ~10!

wheres0 is the width directly in front of the listener. Th
absolute value in the denominator is necessary to accoun
the sign of cosu in the different quadrants.

As the span approaches 180°, there is a second,
structurally more important, effect that must be considere
the computations, namely ‘‘wrapped’’ probabilities. If, fo
example, the source is at 80° to the left of center, the pr
ability of choosing a response that is 70° to the right
center is not just the probability of making an error of 150
one must add also the probability of making an error of 21
(36021505210). The need to include wrapped probabiliti
signifies the departure from the terminated-span calcula
considered in Sec. I A 1. For example, it is no longer nec
sary to consider the random guessing limit because la
probabilities for responses off the ends of the array are
rectly wrapped. The calculations shown in Figs. 3 and
below include both the effect of source-dependent width
wrapped probability.

Figure 3 illustrates howD depends on spanG when the
array is centered on the forward direction and exte
equally to the listener’s left and right byG/2. The figure
shows the effect of the variation ofs with source angle for
various values ofs0 when the number of sources is large.
the span is small,s is approximately constant. The fact th
3549 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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D/s changes by less than 10% asG increases to about 120
shows that the assumption of constant ITD is equivalent
constant-sigma approximation even as a source span
comes as large as660°. As the span increases beyond 12
D begins to rise. Whens0<0.1G this rise is proportional to
the increase in the average value ofs. Therefore, if the plot
of D is normalized to the value ofs averaged over the spa
the plot becomes almost a flat line, independent ofG. The
average value ofs from integrating Eq.~10! is

s̄54s0

tan~G/4!

G
~G<p!,

~11!

s̄54s0

22tan~p/22G/4!

G
~p,G<2p!,

whereG is expressed in radians.
For s0 greater than 10% ofG, the average-sigma mode

is less successful. For a span greater than 160°, there
anomalous curvature whens050.2G.

FIG. 3. rms error as a function of spanG when widths changes with source
position such that the width expressed as interaural time difference rem
constant. rms errorD is normalized to the width directly in front of the
listeners0 . The number of sources in the calculation wasN550.

FIG. 4. rms error for source-dependent width as a function of the numbe
sources. The span is 180° centered on the forward direction. This figure
be compared with Fig. 1 to see the effects of source-dependent width
wrapped probability. The tick mark on the right axis shows the aver
width over 180°.
3549Hartmann et al.: Source identification method
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Figure 4 showsD as a function of the number of source
for a span of 180°. As described in connection with Fig.
the asymptotic values in the largeN limit are similar to Fig.
1 except that they are scaled by the average ofs/s0 . From
Eq. ~11! for G5180°, this is equal to a scale factor 4/p or
1.27. Figure 4 shows that whenN is not asymptotically large
this simple scaling does not always apply. The figure a
shows thatD does not vary monotonically withs0 ; the
value fors050.2G seems to be out of order. Figure 3 su
gests that this nonmonotonic behavior is restricted to sp
greater than about 160°. The curiously large curvature for
plot with s050.2G occurs only for such large spans. Th
nonmonotonic behavior is the result of the combined effe
of source-dependent width and wrapped probability. Cal
lations that exclude either one of these show only a mo
tonic dependence on width.

Calculations with a 180° span and wrapped probabi
were also done for a constant~source-independent! value of
the width. The calculations led to a plot ofD vs N that was
almost identical to the terminated-span calculation in Fig
except for the extreme case,s050.4G. For both,D system-
atically underestimated the width. For the terminated s
the reason was end effects, as noted in Sec. I A 1. For
wrapped span the reason is the wrapped probabilities th
selves.

If the width is less than 20% of the span, wrapped pro
ability has a negligible effect onD(<1%) when the span is
not greater than 180°. Because wrapping complicates
analysis of data, an experimenter would do well to av
spans approaching 180° if the experimental conditions p
mote large internal width, 30° or more.

3. Span greater than 180 degrees

When a span exceeds 180°, the source array canno
entirely in front of the listener. Some sources must exte
toward the rear, and this changes the perceptual nature o
localization task. Sources which differ considerably in a
muth may lie on the same cone of confusion and be perc
tually similar. This multidimensional aspect of perception
not captured in our one-dimensional localization model. F
purposes of illustration we proceed with the model anyw

When G becomes greater than 180°, the array its
wraps around so that some sources are closer to each
across the gap between source 1 and sourceN than along the
span. This possibility requires a new computational rule
scoring such that the maximum error charged against
listener is 180°. Any error that is found to be greater th
180° is replaced by its 360° complement. Thus for any p
of sources in the array, there is a unique magnitude
direction of the difference between them.

When the source array extends behind the listener,
common to deal with the multidimensional character of
task by regarding confusions between front and back sou
as separate from azimuthal confusions. Therefore azimu
errors are computed by giving the listener the benefit o
reflection in the frontal plane~includes the points at690°
azimuth and the point overhead! if that leads to a smalle
error ~Wightman and Kistler, 1989!. Below, the calculations
that employ that rule are called ‘‘reflection scoring.’’ It is n
3550 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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necessary that an actual source be present at the site o
reflection. When reflection scoring is introduced, the fin
value of the error is the smallest of the listener’s choice or
360° complement, or the reflected choice or its 360° comp
ment.

As an example of large spans, we chose a spanG
5270°. The array was centered on the midline, with one e
at 2135°, the other end at1135°, and the remaining source
(N22) equally spaced in between. The internal width w
taken to depend on source angle per Eq.~10!.

Figure 5~a! shows the results without reflection scorin
As before, D/s0 is quite insensitive to the number o
sources. Upon careful observation, periodic variations can
observed in theD/s0 data, especially for smalls0 . This
effect is due to the arrangement of the sources based oG
and N. When G5270°, there are sources located atu
5690° wheneverN56n11 ~where n51,2,...). This cre-
ates peaks because the averagesk is increased.~The same
effect occurs for circular spans wheneverN54n.) The
analogous plot ofsI /s0 is the same asD/s0 in Fig. 5~a!
within 10%, except whens0 /G50.4 where the discrepanc
becomes about 15%.

Figure 5~b! shows the effect onD when reflection scor-
ing is introduced. The values ofD are generally reduced, o
course. Further, the tendency for peaks atN56n11 is
greatly enhanced. A better description of the effect is t

FIG. 5. rms error for source-dependent width, and for a large spanG
5270°. Part~a! does not give the subject the benefit of a front-to-ba
reflection; part~b! has reflection scoring.
3550Hartmann et al.: Source identification method
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reflection scoring introduces a valley centered onN values
given by N56n14. Valleys result from source placemen
in which the localization score benefits the most when
listener is given credit for a correct answer despite a fro
to-back reversal.

According to Eq.~11!, the average width,s̄(270), is
equal to 1.35s0 . In the limit of a large number of sources,D
agrees very well with the expectationD51.35s0 if reflec-
tion scoring is not used@Fig. 5~a!#. Only as the ratio of width
to span grows to 0.4 is there appreciable departure.~For a
270° array a ratio of 0.4 means that the internal width
more than 100°, a case of extreme uncertainty.! Even if the
number of sources is not large, theD values in Fig. 5~a! do
not differ from the expected value by more than about
percent. The same statements cannot be made about th
culation with reflection scoring@Fig. 5~b!#. Then statisticD
is less stable both with respect tos0 and with respect to the
number of sources. The peak and valley structure is, h
ever, particularly apparent for a 270° span. For general s
G(G.180°), peaks and valleys are not as frequent. A p
occurs forN sources when there are two integersN andk that
satisfy the condition

N5
2G~2k21!11

2G11
, ~12!

whereG is the span fraction,G5G/360.
It is somewhat difficult to evaluate the significance

the structure observed for reflection scoring because we
not believe that our one-dimensional calculation is appro
ate perceptually for sources that extend to the rear. Howe
this objection to the calculation is not fatal. The actual ca
of the valleys in the structure is a series of source locati
that particularly benefit the listener when reflection scoring
introduced. To some degree, this experimental artifac
bound to appear with reflection scoring. The precise size
the artifact depends on the perceptual model.

4. Summary

At the outset of this section on the SIM without bias,
was conjectured that the values ofD andsI might be insen-
sitive to the number of sources. It was expected that
smaller probability of making an error when the number
sources is small would be compensated by the larger pen
when an error is actually made. Therefore, it was furt
conjectured that experimental values ofD andsI should pro-
vide reliable estimates of internal widths. In the end, Secs
I A 1–3 above support these conjectures. The conjectu
hold for a wide range of widths and source spans. Howe
the relationship between quantitiesD and sI and the width
parameter depends on the width parameter itself, in the f
s/G, as shown by Figs. 1–5. Therefore, an actual determ
tion of the width fromD or sI may require some modes
iteration. The functions in the figures are so well behav
that convergence is assured.

B. Calculations with bias

The model of Sec. I A described a listener without bi
When the sound originated from sourcek, the internal distri-
3551 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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bution for auditory localization cues was centered at the
cation uk , corresponding to the reference position of t
source as established visually. It is this reference coordin
that the listener uses in making responses. Therefore,
statistics of the responses to sourcek depended only on a
single parameter, the widthsk . The model without bias is
however, an idealization. Unfortunately, in sound localiz
tion, bias is the rule and not the exception. Bias is introdu
by visual cues~ventriloquism! and by acoustical cues, suc
as the reflections from walls in an asymmetrical room en
ronment. Bias can be introduced into an experiment delib
ately; a large visual bias is caused by directing a listene
gaze to the end of a source array~Hartmann, 1983a!. A large
acoustical bias can be created by putting a single reflec
surface in an otherwise anechoic room~Rakerd and Hart-
mann, 1985!. But although bias can be experimentally co
trolled, it cannot be entirely eliminated; it is normally prese
for any listener whether one wants it or not~Hartmann,
1983b!.

Bias consists of a displacement of internal acousti
cues with respect to the angular reference coordinate sys
uk . Therefore, bias can be seen in plots ofR(k), and it is
measured for individual sources by constant errorC(k). An
average measure of bias isC. Because the rms error,D,
includesC @Eq. ~6!#, the bias also appears inD.

In this article we take the view that the goal of the e
perimenter is to use the source identification method to le
about the width of the internal distributions. The presence
of bias poses a problem, and the purpose of the present
tion is to try to deal with it. Althoughs can be determined
from eithersI or D in the absence of bias, the presence of b
has a major direct effect onD which makes it unreliable for
estimatings. By contrast, the variabilitysI should, in prin-
ciple, be independent of bias because variability is calcula
with respect to the mean response made by the listener
not with respect to a physical referent. In practice, howev
sI is affected by bias, both because of effects at the end
the arrays and because of the quantization of the respon
Therefore, statisticsI is the best statistic to use to estimates
in the case of bias, but it is not without troubles of its own,
will be seen below. What makes it difficult to discuss bias
that bias can take many forms. Below, we deal with tw
types, constant bias and central bias. Calculations are
sented in the small-span limit.

1. Constant bias

Constant bias means that the displacement of the ac
tical cues with respect to the reference coordinate syste
constant, independent of the source. Constant bias is a c
mon occurrence, especially if the array of sources is sm
The effect of directed gaze on the localization of sources
28° span was found to be modeled best by a constant
~Hartmann, 1983a!.

Numerical studies, using the decision theory model a
constant width, on the effects of constant bias showed
bias can always be neglected if the number of source
large enough. If the bias is large, it may not be practical
run as many sources as are needed forsI to give a good
estimate ofs0 , but largeN is an important limit to keep in
3551Hartmann et al.: Source identification method
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mind. The effect of bias onsI depends sensitively on the rat
of biasb to width s0 . Bias effects are shown in the plot ofsI
in Fig. 6 for the special case that the bias is twice the wid
The filled-circle plot in Fig. 6 showssI when the bias is 5%
of the source span (b/G50.05) ands0 /G50.025. It can be
compared withsI in the absence of bias~open circles!. When
there is no bias,sI gives a good estimate ofs0 if the number
of sources is aboutN514 or greater. Adding the bias has
dramatic effect on the variability, leading to a peak atN
59. The peak overestimatess0 by a factor of 2.

The behavior shown by the circles in Fig. 6 is typic
Whenever the bias is twice the width there is a peak~height
1.5,sI /s0,2.5) as a function ofN. The peak occurs atN
5Nmax, whereNmax'Int(0.2G/s0)11. Not surprisingly, a
given bias has the largest effect for the smallests0 , and the
number of sources needed to eliminate that effect may
come large. The square symbols in Fig. 6 check the ab
statements when the bias isb/G50.2 and the width is
s0 /G50.1.

If the bias becomes as large as 4s0 , sI becomes an os
cillating function ofN and cannot estimates0 . On the other
hand, if the bias is no larger thans0 itself then the effects of
bias onsI are less than 10%, so long as there are four or m
sources in the array ands0 /G is larger than about 0.02. The
it is possible to ignore the bias in determinings0 as the
large-N limit of sI .

2. Central bias

Whereas constant bias is necessarily directed toward
end of the source array or the other, central bias is direc
toward the center of the array. In the common case o
symmetrical array with the subject looking at the center
central bias may be a visual effect. In general, any cen
tendency, such as a reluctance to choose extreme respo
appears as a central bias.

The central bias function itself might take differe
forms: straight line, S-curve, step function, etc. The calcu
tions of this section employ a step-function bias functi
because the experiments described below often foundR(k)
functions approximately of this form. In a step-function bi

FIG. 6. The role of constant bias. Open symbols show variabilitysI when
there is no bias. Filled symbols show the effect of making the bias,b, twice
the width,s0 . Two values ofs0 /G are shown.
3552 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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the auditory cues for all the sources to the left of center
biased toward the right by a constant (bl) and all the sources
to the right of center are biased toward the left by a cons
(br). The bias can be characterized by a single central-b
parameterbc if it is symmetrical (bl5bc andbr52bc).

Model calculations for small spans indicated thatsI cal-
culated with central bias was very similar tosI calculated
with a constant bias of the same magnitude. Typical diff
ences between the two kinds of bias were less than 10%
N large enough to provide a reasonable estimate ofsI . The
sign of the difference was always the same; central bias
to the largersI . The difference grew with increasing bia
magnitude. However, as long as the bias was not greater
twice the width, the difference was less than 33% even w
the bias was as large as 80% of the span.

II. EXPERIMENTS

To test the model calculations we performed localizat
experiments. We were particularly interested in howD andsI
depend on the number of sources in a given span. There
the experiments were performed using 3, 6, 12, and
sources.

A. Tasks

In order to test the computations in several ranges ofs0 ,
we used two tasks, one in which the localization was e
and one in which it was difficult. Both tasks were perform
in a reverberation room.

1. Easy (EL) experiment

In the easy localization~EL! task, listeners sat 3 m away
from an array of speakers in the horizontal plane. The ar
extended 23° to the left and right of the midline (G546°).
Broadband noise at a level of 55 dB SPL was given a st
function amplitude envelope and played through one of
speakers. The subjects’ task was to declare which lo
speaker had sounded.

2. Difficult (DL) experiment

The difficult localization task~DL! was made much
more difficult than the EL task. Listeners were 6 m away
from the source array, again in a 46° span. Because of
larger distance to the source, incoherent reverberant so
was a larger fraction of the total sound power, making loc
ization more difficult. The stimulus was broadband noise t
had been low-pass filtered~corner frequency of 5 kHz,248
dB/octave!. Therefore, listeners could not use hig
frequency interaural intensity cues that are especially hel
in this room. The SPL of the noise before filtering was ide
tical to the EL experiment. The filtered noise was given
linearly rising amplitude envelope with a duration of 2
During the onset, uncorrelated broadband noise was pla
at a level of 85 dB through a speaker behind the subje
neck to mask the onset of the stimulus. Therefore, listen
gained no benefit from the precedence effect, further deg
ing localization ability. Again, the task was to declare whi
loudspeaker sounded.
3552Hartmann et al.: Source identification method
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B. Method

The reverberant room was rectangular with dimensi
7.6736.3533.58 m high. It had a reverberation time of 4
at midrange frequencies. The orientation of the array in
room is best described as a nonspecial geometry. The
loudspeakers were Realistic Minimus 3.5, consisting o
single driver in a sealed box. They had been chosen fro
set of 85 based on similar on-axis frequency response in
anechoic environment.

The configurations for the different number of sourc
were as follows:

N524⇒A52°⇒G546°,

N512⇒A54°⇒G544°,

N56⇒A58°⇒G540°,

N53⇒A523°⇒G546°.

The loudspeakers were at ear level of a seated subje
bar rested on the head of the subject to help the sub
maintain a constant, forward facing position. Each sou
was labeled with a number, and the subject made a resp
by using a button box to increment a numerical display up
down. The display reading was then recorded by the co
puter running the experiment.

C. Subjects and procedure

Four subjects participated in these experiments. Subj
W, R, and G were males, ages 57, 45, and 21, respectiv
and were the coauthors of this article. Subject J was a fem
of age 17. Subjects W and R had extensive experienc
localization experiments and had high-frequency hear
losses typical of males their age. Subjects G and J had re
experience as subjects and had normal hearing.

The experiments were performed in blocks of runs
both easy~EL! and difficult ~DL! tasks. A block consisted o
a run for each source spacing condition for either the EL
the DL case. The runs of a given block were performed
the same day, and the order of the runs within a block w
randomized. Each run consisted of 48 stimulus-respo
pairs and lasted 10–15 min. Within each run, all stimuli we
presented an equal number of times in random order. Th
fore, a particular source was presented twice forN524, four
times for N512, eight times forN56, and 16 times forN
53. There was no feedback, but a curious subject was
lowed to view the results at the end of a run. Each sub
did three blocks for both EL and DL conditions.

D. Results

The experimental results appear in their greatest deta
plots ofR(k), the average response of a listener to sourck.
For illustration, plots ofR(k) are shown for listener W in
Fig. 7~a! and ~b! for the EL and DL experiments, respe
tively. Perfect performance corresponds to anR(k) plot that
is a 45-degree line. It can be seen that Fig. 7~a! approximates
a 45-degree line, although there is considerable central b
as described above. The plot for the DL experiment in F
7~b! shows enormous deviations from the 45-degree idea
3553 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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well as central bias. Figure 7~a! and ~b! is typical of R(k)
plots for all the listeners, although different listeners h
different forms of bias, some better approximated as cons
bias, not central.

Of primary interest in the present article are the avera
quantities D and sI for the eight different conditions (N
524, 12, 6, and 3 for both the EL and DL experiment!.
These are given in Table I, averaged over the three runs
each listener. These averages and corresponding standa
viations (n21) over the three runs appear in Figs. 8 and

III. COMPARISON—THEORY AND EXPERIMENT

The principal comparison between theory and expe
ment was a test of the prediction of the decision the

FIG. 7. FunctionR(k), the average response of listener W to source num
k. Error bars are plus and minus the variability,s(k). Experiments with
different numbers of sources~N! are plotted on the same graph: stars f
N524, open circles forN512, open squares forN56, and filled squares for
N53. Part~a! is for the EL experiment. Part~b! is for the DL experiment.
Each small division on horizontal and vertical axes corresponds to 2°.
3553Hartmann et al.: Source identification method
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model for the dependence ofsI and D on the number of
sources in the array. This dependence was the primary fo
of model calculations themselves, for small and large sp
with and without bias.

Because the experimental span was only 46° the mo
calculation could be done in the small-span limit. The inp
parameters to the model were the width of the internal d
tribution and the bias. The bias was assumed to be of
constant type, or, equivalently, central. The biases obse
experimentally were of both types, but, as described in S
I B 2, these two types of bias have similar effects on
average statistics of interest. It was assumed that the w
and bias parameters depend only on the listener and the
perimental conditions—EL or DL. Therefore, it was e
pected that the dependence on number of sources, for boD
andsI , should be predicted by the model.

TABLE I. Experimental values of rms error (D), variability (s), and con-
stant error (C) for four listeners in two source identification experimen
easy~EL! and difficult ~DL!. The arrays spanned 46 degrees and includ
N53, 6, 12, or 24 sources. Values of width and bias are model param
determined from the asymptotic variability and constant error, respectiv
The parameters were used for model calculations in the comparison
that follow.

Experiment~degrees! Model ~degrees!
Listener N D sI C width bias

EL experiment
G 3 0 0 0

6 0 0 0
12 2.21 1.68 1.44
24 2.01 1.21 1.60 1.21 1.60

J 3 0 0 0
6 1.09 0.84 0.69

12 3.09 1.67 2.60
24 3.01 1.26 2.73 1.26 2.73

R 3 0 0 0
6 2.66 2.37 1.21

12 3.26 2.03 2.55
24 3.13 1.64 2.67 1.64 2.67

W 3 0 0 0
6 3.21 2.44 2.09

12 3.85 1.93 3.33
24 3.59 1.43 3.29 1.43 3.29

DL experiment
G 3 10.14 8.60 5.37

6 8.54 6.88 5.06
12 11.39 6.73 9.19
24 11.70 6.04 10.02 6.70 10.02

J 3 8.08 7.82 2.03
6 8.70 6.48 5.81

12 9.21 6.79 6.22
24 9.61 4.14 8.67 4.50 8.67

R 3 11.60 10.00 5.88
6 9.70 8.29 5.04

12 11.46 6.56 9.40
24 11.13 6.42 9.09 7.40 9.09

W 3 7.12 6.73 2.32
6 10.00 6.13 7.90

12 10.27 5.94 8.38
24 11.37 5.13 10.15 5.70 10.15
3554 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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The procedure for assigning model parameters w
simple. We assumed that the width should be determined
the large-N limit of sI , i.e., N524 in Table I. When the
model width is small it is equal tosI (24); when the width is
not small, it must be taken to be somewhat larger than
experimentalsI (24) in order thatsI (N) agrees with experi-
ment in the limit thatN524.

We also determined the bias parameter from the exp
mental constant error,C(24), in Table I. As a measure o
bias, this constant error approximately agreed with the ve
cal shifts seen in plots ofR(k). For example,C(24) for
listenerW in Table I is 3.29°. This agrees withR(k) in Fig.
7~a!, which suggests a central bias averaging 1.5–2.0 d
sions, or 3°–4°.

Therefore, the nature of the comparison was to de
mine the model parameters from the width and estima
bias for N524 and to compare the model predictions, f
both sI and D, with the experimental results forN53, N
56, and N512. The model parameters are shown in t
right two columns in Table I.

The comparisons between calculations and the EL
periments are shown in Fig. 8. The comparisons show
the model is in reasonable numerical agreement with exp
ment, even though the parameters were not chosen to
vide an optimum fit. Further, the model captures a numbe
features seen in the experiments: There is a tendency f

FIG. 8. Comparison between experiment~points! and model~solid lines! for
the easy localization~EL! experiment. Each row is for a single listener,sI
andD. Error bars are two standard deviations (n2152 weight! in overall
length. Dashed lines connect the experimental points.
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peak insI andD as a function ofN when the width is small.
However, theoretically the peak is less prominent forD than
for sI , and experimentally no significant peak appears inD.

The comparisons between calculations and the DL
periments are shown in Fig. 9. In the DL experiments
width is large. For large width, theory and experiment ag
that there is no peak for 3<N<24; there is only a tendenc
for sI to decrease with increasingN. D is also predicted to
decrease in the region of smallN, as observed experimen
tally for two of the listeners. Overall, the agreement betwe
experiment and model is better forsI than for D, and this
result is not surprising given thatD is more sensitive to bias
which is treated only in the simplest possible way by t
present model calculation.

IV. CONCLUSIONS

The source-identification method~SIM! is a standard
technique used to measure the ability to localize a sou
The method uses an array of source positions, which is
ticularly useful when there is reason to expect that the p
ception of any one source would be special. Such conditi
occur in rooms. The experimental data from this method
in the form of variability ~theoretically insensitive to bias!
and rms error~includes both variability and bias!. The
method can be analyzed with a decision theory model ba
on a coordinate system imagined to be internal to the
tener. Sources from the physical world lead to distributio
of localization cues on this internal coordinate, characteri

FIG. 9. Same as Fig. 8 but for the difficult localization~DL! experiment.
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by a modelwidth and a displacementbias of the mean. A
similar model was used to analyze the minimum audi
angle method~Hartmann and Rakerd, 1989!.

Calculations are simplest for a terminated-span mod
Here, the array is short enough that points on the inter
coordinate that are to the left of the leftmost source must
assigned to the leftmost source; they do not wrap around
become confused with positions on the right. Terminat
span calculations find that if bias is negligible, both the r
error and the variability can provide good estimates of
average width of the internal distribution if there are enou
sources in the array. The results are very insensitive to
number of sources if the spacing between the sources is
than or approximately equal to the width. The variabili
appears to be a good measure of the width even in the p
ence of bias if the bias is smaller than the width.

Bias that is larger than the width—a freque
occurrence—complicates the relationship between exp
mental results and the parameters of the internal distribut
The variability ~not the rms error! may still be a reliable
measure of the width if the number of sources is lar
enough. To determine the required number of sources,
must model the bias in some way and fit the experimen
data to width and bias model parameters. Two simple b
models, constant and central, were found to give similar
sults.

When the angular span of the model is not terminat
probabilities are wrapped around a complete circle. Calcu
tions indicate that the variability continues to provide a go
measure of the internal width, as long as the width is
greater than 20% of the span.

When the angular span of the actual sources is wrap
beyond 180°, source localization becomes a multidim
sional perceptual problem, and the perceptual distance
tween two sources is not a monotonic function of the a
muth difference. Therefore, our one-dimensional mode
not applicable. Applying the model anyway reveals comp
cated effects that occur when localization scores are gi
the benefit of a front-to-back reversal. Similar effects a
expected to occur independent of the model.

Finally, experiments with human listeners were done
order to test the model calculations. The experiments us
small span in which the number of sources varied from 3
24. To provide a stringent test, both easy localization~EL!
and difficult localization~DL! experiments were done. Th
experiments were done in a reverberation room, and cons
errors~biases! were a major component of the overall error
It was found that the model gave a reasonable account o
experimental results, even though the model treatmen
bias was simple. To improve on the methods used h
would require a treatment of bias peculiar to each individ
listener. The resulting model would lead to better agreem
with experiment, at the cost of generality.

Because of its internal consistency and satisfactory
perimental validation, the decision theory model in this
ticle can serve as a guide to the design and analysis of so
identification experiments. In the matter of experimental d
sign, the model can determine the correct number of sou
to use in an array, based on anticipated results. After the
3555Hartmann et al.: Source identification method
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error and variability data are experimentally known, t
model can be used, first to decide whether a reliable valu
the width of the internal distribution can be determined fro
the data, and second to calculate the actual values of
width and the bias.
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APPENDIX: LIMITS OF HIGH UNCERTAINTY

In the limit of high uncertainty, the width of the interna
distribution becomes large compared to the span. In the
treme uncertainty limit, there is a negligible probability th
the internal representation of the source lies within the s
of allowed responses. Therefore, terminated-span model
culations find that all responses become extreme respon
In the absence of bias, sources 1 andN are chosen equally.

Then D2 is given by summing the squared differenc
between theN sources and the extremes. The two extre
sums get the same weight~1/2!, and they are, in fact, equa
Therefore,

D25
A2

N (
k51

N

~k21!2. ~A1!

The finite sum can be done, and

D25A2
~2N21!~N21!

6
. ~A2!

Because the span isG5(N21)A,

D5
G

)
A11

1

2~N21!
. ~A3!

The second term inside the square root can be negle
when the number of sources becomes large; even if there
as few as four sources, dropping this term makes less th
10% change inD.

In the limit that all responses are extreme respons
statisticsI can be calculated from the differences between
extremes and the mean. If there is no bias, the mean of
extremes is (N11)/2, and

s25A2F1

2 S 12
N11

2 D 2

1
1

2 S N2
N11

2 D 2G , ~A4!

so that

sI5A
N21

2
5

G

2
. ~A5!

The extreme response results forD andsI @Eqs.~A3! and
~A5!# are the correct limits for the statistical technique us
3556 J. Acoust. Soc. Am., Vol. 104, No. 6, December 1998
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in this article as the uncertainty becomes infinite. Howev
these limits are unreasonable because listeners can ac
better performance by guessing randomly among
sources. Better large uncertainty limits are the random gu
ing limits calculated below.

If the N sources are presented equally often,D is the
square root of

D25
A2

N (
k851

N

(
k51

N

P~k8uk!~k2k8!2, ~A6!

whereP(k8uk) is the probability of choosing sourcek8 given
that sourcek was presented.

If listeners guess randomly then, in the absence of b
they make each responsek8 equally often, independent of th
sourcek, and P(k8uk)51/N. The double sum can be don
and

D25A2
~N21!~N11!

6
, ~A7!

or, in terms of spanG,

D5
G

A6
A11

2

N21
. ~A8!

Equation~A8! is less than~A3! as expected.
Similarly sI can be calculated from

s25
A2

N (
k851

N

(
k51

N

P~k8uk!@k82R~k!#2, ~A9!

whereR(k) is the mean response given sourcek.
In the random guessing limit and in the absence of b

the mean response to sourcek is the mean location, indepen
dent ofk, R(k)5(N11)/2. Therefore,

s25
A2

N (
k851

N Fk82
N11

2 G2

. ~A10!

Doing the finite sum leads to

s25A2
N221

12
, ~A11!

and in terms of spanG,

sI5
G

A12
A11

2

N21
. ~A12!

Equation~A12! is less than~A5! as expected.
From Eqs.~6!, ~A8!, and ~A12!, C5sI and the overall

rms error is equally divided between variability and cent
bias.

1This kind of bias, depending on the source, was called ‘‘sensory’’ bias
Hartmann and Rakerd~1989!. Mathematically, it behaves similarly to the
‘‘response bias’’ introduced by Braida and Durlach~1972!, which, how-
ever, is a function of the response and not the source.

2Searleet al. ~1976! concluded that the width of the internal distributio
scales with the span of the sources. This conclusion paralleled the e
discovery that the width for absolute identification of intensities scales w
the range of intensities~Durlach and Braida, 1969; Braida and Durlac
1972!. A problem with this parallel is that the work by Searleet al. ~also
Shelton and Searle, 1978! failed to distinguish between width and bias. Th
more recent work by Koehnke and Durlach~1989!, while not strictly in-
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volving localization, may have remedied that problem. That work fou
incomplete scaling, as predicted by Hartmann and Rakerd~1989!.
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