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The Woodworth model and formula for interaural time difference is frequently used as a standard in

physiological and psychoacoustical studies of binaural hearing for humans and other animals. It is a

frequency-independent, ray-tracing model of a rigid spherical head that is expected to agree with the

high-frequency limit of an exact diffraction model. The predictions by the Woodworth model for an-

tipodal ears and for incident plane waves are here compared with the predictions of the exact model

as a function of frequency to quantify the discrepancy when the frequency is not high. In a second

calculation, the Woodworth model is extended to arbitrary ear angles, both for plane-wave incidence

and for finite point-source distance. The extended Woodworth model leads to different formulas in

six different regions defined by ear angle and source distance. It is noted that the characteristic cusp

in Woodworth’s well-known function comes from ignoring the longer of the two paths around the

head in circumstances when the longer path is actually important. This error can be readily cor-

rected. VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4861243]

PACS number(s): 43.66.Pn, 43.66.Qp [EB] Pages: 817–823

I. INTRODUCTION

The Woodworth model and formula1 compute the inter-

aural time difference (ITD) for a human listener or other ani-

mal assuming that the head is a rigid sphere and that the ears

are antipodal points. The model appeared in the textbook by

Woodworth (1938) without derivation or qualifications and

is based on ray tracing with simple geometry. The formula

was found to be in excellent agreement with the interaural

delay for clicks measured on human listeners by Feddersen

et al. (1957), and it has been used often in binaural acoustics

(e.g., Carlile, 1996; Schnupp et al., 2003) and binaural syn-

thesis (e.g., Brown and Duda, 1998; Nam et al., 2008).

The Woodworth model is physically valid when the

wavelength of the sound is much smaller than the radius of

the head. For a head of radius 87.5 mm in room-temperature

air, this corresponds to frequencies above about 4 kHz. In

this article, we show, by means of a straightforward but

extensive numerical calculation, that the model and its

creeping wave solution approach the high-frequency limit of

the exact diffraction equation developed by Rayleigh (1896)

and made more accessible by Rschevkin (1963), Kuhn

(1977), and by Duda and Martens (1998). The numerical cal-

culation establishes the limits of validity of the formula as

the frequency of the sound departs from infinity and quanti-

fies the error in Woodworth’s approximation. The error can

be considerable when the assumptions of the model are not

respected. This article also extends the Woodworth model so

that it applies when sources are a finite distance away from

the head and when the ears are not antipodal. The extended

model can be useful when the spectrum of the signal is not

known exactly so that the exact diffraction model is not ap-

plicable. Elements of this extension have been given in pre-

vious literature, as will be noted in the following text, but

the extension given here is complete. The extensions are use-

ful when the ray-tracing assumptions of the original model

are valid, but the geometry differs from the original.

II. WOODWORTH MODEL AS A LIMIT

The Woodworth model assumes a rigid, spherical head

and a source of sound at some azimuth angle with respect to

the forward direction so that the source is closer to one ear

than to the other. The ITD is given by the extra path length to

the far ear divided by the speed of sound. In turn, the path

lengths are computed by ray-tracing geometry. The path

length from a source to an unoccluded ear is the straight-line

distance between the source and the ear. The path length to

an occluded ear is given by the straight-line path of a tangent

to the sphere plus the arc length from the point of tangency to

the ear. Thus it is assumed that the wave creeps around the

surface of the head to an occluded ear. Only the shortest arc

length is included in the calculation for an occluded ear. The

wave that creeps around the far side of the head is neglected.

A. Woodworth formula, antipodal ears

Woodworth’s model for the ITD assumed that the arriv-

ing sound is a plane wave (infinite source distance) and that

the ears are 90� back from the forward direction (ear angle

of 90�). With those assumptions, there are two formulas for

the ITD for a source on the right side of the head,
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ITD ¼ a=cð Þ hþ sin hð Þ½ � 0 � h � p=2½ � (1a)

and

ITD ¼ a=cð Þ p� hþ sin hð Þ½ � p=2 � h � p½ �; (1b)

where h is the azimuth in radians (0� h�p) for the source

measured from the forward direction, a is the head radius,

and c is the speed of sound. The first of these formulas is for

a source in front of the head (where the nose is), and the path

to the occluded ear is around the front of the head. The sec-

ond formula is for a source in back (source azimuth greater

than 90�) so that the path to the occluded ear is also in back.

For this and other sections of this article, it is assumed that

the head is left-right symmetrical having reflection symme-

try through the mid-sagittal plane. Therefore the sign of the

ITD will always be positive when the source is to the right

of the mid-sagittal plane, and it is enough to give formulas

for a source on the right with azimuths between 0� and 180�.
ITDs for sources on the left are the same except that the

signs of h and the ITD are both reversed.

Because the standard Woodworth model assumes that

the ear angle is 90�, this form of the model is front-back

symmetrical and exhibits a cone of confusion, as noted by

Woodworth and Schlosberg (1954). For any source located

on the surface of a cone with rotational symmetry about the

interaural axis, the ITD will be the same.

B. Exact diffraction calculation

Our test of the Woodworth model is based on an exact

diffraction calculation for a rigid, spherical head. The rigidity

assumption says that the component of the wave velocity per-

pendicular to the surface of the head is zero. It corresponds to

an infinite impedance discontinuity at the surface. Such an

assumption is valid for a head in air. It is not valid for a head

in other media such as water, where the impedance disconti-

nuity is not so large (Hollien and Rothman, 1971; Wells and

Ross, 1980), but we will not consider such cases here.

Consistent with the assumptions of the Woodworth model,

the diffraction calculation assumes a plane-wave incident on

a spherical head with an ear angle of 90�.
The diffraction calculation of the pressure on the surface

of a rigid sphere is an infinite sum of partial waves,

p h0ð Þ ¼ po

ka

� �2XN

n¼0

inþ1 2nþ 1ð ÞPn cosh0ð Þ
h0n kað Þ

; (2)

where p(h0) is the complex pressure at a point on the sphere,

and h0 is the angle between a radius to that point and a

directed line to the source. Pressure po is a reference, equal

to what the pressure would be at the location of the center of

the head if the head were absent. Function Pn is a Legendre

polynomial, and h0n is the derivative of a spherical Hankel

function of the second kind with respect to its argument. The

argument ka is the product of the wave number k (defined as

2p divided by the wavelength) and the head radius a, which

is nominally 87.5 mm (Hartley and Fry, 1921; Algazi et al.,
2001). The upper limit on the sum, N, must be infinite to

obtain an exact solution, but because the sum converges, N
is limited in practical computation. Larger values of N are

required for greater precision or for higher frequencies,

where the sum converges more slowly.

We are interested in the pressure on the sphere where

the ears are located, at angle hE clockwise and counterclock-

wise from the forward direction. To be clear, by definition

hE is the same positive number for both ears. For instance,

for antipodal ears hE¼ 90�. Therefore to compute the pres-

sure at the right ear (nearer the source) h 0 ¼ hE� h, and for

the left ear (farther from the source) h 0 ¼ hEþ h. That is how

h 0 in Eq. (2) is determined from the ear angle hE and the

source azimuth h for h> 0.

The phase of a signal, /, is given by the imaginary part

of the natural logarithm of the pressure at the ear. For the

right ear, for example, /R¼ Im{ln[p(hE� h)]}. The ITD is

the interaural phase difference (in radians) divided by the

angular frequency x¼ 2pf, i.e.,

ITD ¼ Im ln p hE þ hð Þ=p hE � hð Þ
� �� �

=x (3)

with hE set equal to p/2.

Equations (2) and (3) lead to an exact solution for the

ITD, and that solution ought to be an adequate test for any

alternative calculation such as the Woodworth formula.

However, several years ago we had occasion to compare the

predictions of that solution with interaural phase measure-

ments made on an 87.5-mm sphere in an anechoic room

using an array of 13 loudspeakers separated by 7.5�.
Measurements for 15 frequencies spanning the range from

0.2 to 6 kHz therefore led to 195 comparisons. Because of

geometrical inaccuracies in the array, measurements were

made twice, first clockwise (speakers to the right of the

sphere), then counterclockwise (speakers to the left of the

sphere). The two measurements differed by an average of

about 20� of interaural phase angle. In the comparison, the

solution from Eqs. (2) and (3) split the difference between

the two measurements on 156 of the 195 comparisons, dem-

onstrating good experimental correspondence between

model and measurement.

Using Eqs. (2) and (3), we computed the ITD for fre-

quency f equal to 0.5 kHz, a low frequency. The frequency is

low enough that the ITD from the full diffraction calculation

is approximately given by the low-frequency limit formula,

ITD¼ (3a/c) sin(h) (not shown in figures). The maximum

error made by the low-frequency limit occurs near 30� where

the approximation is about 16 ls too low. At 90�, the low-

frequency limit approximation is 6 ls too high. By contrast,

Fig. 1 shows that the frequency-independent Woodworth for-

mula seriously underestimates the ITD for 0.5 kHz. The error

can be as large as 180 ls (azimuth of 60�). At 0.5 kHz, the

ratio of wavelength to head radius is 7.9. Similar errors can

be expected for the head of any animal whenever that ratio is

as large as that. Calculations of the dispersion for a spherical

head with a radius of 87.5 mm show that 0.5 kHz is the upper

edge of the low-frequency region where the low-frequency

limit applies. For all lower frequencies, the limit continues

to apply, but as the frequency increases to 2 kHz, the ITD

for a given azimuth decreases rather rapidly (e.g., Constan
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and Hartmann, 2003, Fig. 1). As a result, the Woodworth

formula is superior to the low-frequency limit (smaller error)

when the frequency is greater than 1.5 kHz.

Using Eqs. (2) and (3), we computed the ITD for 2, 5,

10, and 20 kHz, where the ratio of wavelength to head radius

is, respectively, 2.0, 0.79, 0.39, and 0.20. As often noted, the

sum over partial waves converges slowly when the fre-

quency is high (large ka), and to obtain acceptable accuracy

for ITD, our calculation for 20 kHz required as many as

N¼ 54 terms in the sum. Using such a large number of terms

in a brute-force calculation is not the standard approach to

computing the high-frequency limit of a partial wave sum

such as Eq. (2), although it is possible to do with good preci-

sion on modern computers. The standard approach is to use

the Sommerfeld–Watson transformation (Junger and Feit,

1986). That approach leads to new physical insight. For

instance, it shows that the creeping wave decays exponen-

tially with increasing path angle around the head (Pierce,

1981). However, by summing the terms for finite frequen-

cies, we are able to observe the errors made by the

Woodworth model when the frequency is not very high, as

shown in Fig. 1. For frequencies higher than 0.5 kHz, the

largest errors tend to occur for azimuths between 70� and

85�: 86 ls at 2 kHz, 51 ls at 5 kHz, 32 ls at 10 kHz, 17 ls at

20 kHz.

In a context where the signals are narrow band, such as

sine tones, there are additional considerations. The highest

frequency at which human listeners are sensitive to the ITD

in the fine structure of a waveform is about 1.5 kHz

(Brughera et al., 2013). For that frequency, the error in the

Woodworth formula becomes as large as 100 ls at an

azimuth of 63�. Also, the ITD is not useful if the correspond-

ing interaural phase difference (IPD) is more than 180�. The

dashed line in Fig. 2 shows the azimuth for which the IPD

becomes as large as 180� for a frequency as high as f, shown

on the horizontal axis. The solid line shows the maximum

error, as a function of frequency, given that the azimuth is

less than shown by the dashed line. The limited azimuth has

the effect of limiting the maximum error made by the

Woodworth formula for practical circumstances. When the

frequency is less than 0.9 kHz, the azimuth at which the

maximum error occurs is between 50� and 60�. When the

frequency is greater than 0.9 kHz, the azimuth of maximum

error follows the dashed curve.

III. EXTENDING WOODWORTH’S MODEL

Our extensions of Woodworth’s model are expected to

be useful in computing ITDs for clicks, high-frequency

tones, and high-frequency noise bands, where the assump-

tions of a ray-tracing model are approximately realized. The

extensions involve the same basic wave physics as the origi-

nal model with the ITD computed from the extra path length

to the far ear. The path lengths are again composed of

straight-line paths and creeping waves. Again, only the

shortest path is included in the calculation for waves that

creep to an occluded ear, a step that is made plausible by the

fact that creeping wave amplitudes decay exponentially. We

will consider situations in which the longest and shortest

paths are not dissimilar in Sec. III B 1.

The three conditions involved in extending the model

are shown in (a), (b), and (c) of Fig. 3. Condition (a) is the

original model with plane-wave incidence and antipodal

ears. Condition (b) relaxes the restriction to antipodal ears,

permitting arbitrary ear angles, but retains the plane-wave

incidence. Condition (c) allows for both arbitrary ear angles

and finite source distance. Labels (a), (b), and (c) are then

FIG. 1. Interaural time difference as a function of azimuth for plane-wave

incidence and antipodal ears. The heavy line is from the Woodworth for-

mula in Eq. (1). Lighter lines come from the exact diffraction formula for

frequencies of 0.5, 2, 5, 10, and 20 kHz.

FIG. 2. Limits on ITDs in narrow-band signals caused by the p-limit. The

dashed line shows the azimuth and frequency for which the IPD is 180�

according to the spherical head model (the p-limit). The solid line (axis

labels on the right) indicates the maximum error of the Woodworth formula

within the boundaries of azimuth and frequency allowed by the p-limit.
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also used to label the relevant equations and then used again

in Fig. 4, which specifies the regions of validity of those

equations.

Because the basic physical assumptions are similar, the

validity of the extensions continues to be limited to high-

frequency sounds where the wavelength is considerably

smaller than the head radius.

A. Plane wave source, antipodal ears

The original Woodworth model for an infinite source

distance and ear angles of 90� leads to the two formulas for

the ITD given in Eqs. (1a) and (1b), repeated here and rela-

beled to be consistent with Fig. 4,

ITD ¼ a=cð Þ hþ sin hð Þ½ � h � h � p=2½ � (a2)

and

ITD ¼ a=cð Þ p� hþ sin hð Þ½ � p=2 � h � p½ �; (a3)

the regions of validity of these two equations are shown in

Fig. 4(a).

B. Arbitrary ear angles

More realistic models of the head allow for ear angles

greater than 90�, i.e., hE> 90. Hartley and Fry (1921)

measured the ear separation to be 165�, corresponding to an

ear angle of (360� 165)/2¼ 97.5� in a spherical-head con-

text. Duda and Martens (1998) used 100�, as did Treeby

et al. (2007). Behind-the-ear hearing aids or cochlear

implant microphones involve even larger ear angles. When

the ears are no longer antipodal, the symmetry between front

and back is broken and the surfaces of binaural confusion

are no longer circular cones. The back of the (otherwise uni-

formly spherical) head differs from the front only because

the ears are on the back.

The purpose of this section is to show how to extend

the Woodworth model to other ear angles hE, where

90� hE� 180� while retaining the incident plane wave

assumption. As observed by Duda and Martens (1998), the

ingredients for this treatment consist of only two equa-

tions, one for an occluded ear and one for an unoccluded

ear. However, the practical implementation of those equa-

tions requires the user to observe geometrical limiting

conditions.

In the end, there are actually five separate formulas

required to compute the ITD in general. The correct formula

to use is determined by a set of inequalities for azimuth h
and ear angle hE. The inequalities are complicated, and they

are best expressed in graphical form as shown by the lines in

Fig. 4(b). For instance, if h is below the line h¼ hE� 90 and

h is also below the line h¼ 180� hE, then the right equation

to use is Eq. (b1). Again, if the ear angle is hE¼ 120�, then

we would use Eq. (b1) for azimuths 0< h< 30�, Eq. (b2) for

FIG. 3. An illustration of the three geo-

metrical conditions involved in extend-

ing the Woodworth model. Condition

(a) is the original Woodworth model

with infinite source distance (plane

wave incidence) and antipodal ears

(solid dots) (hE¼ 90�). Condition (b)

maintains plane wave incidence but

allows for arbitrary ear angles hE.

Condition (c) allows for a finite source

distance as well as arbitrary ear angles.

FIG. 4. Regions of azimuth and ear-

angle defining the ranges of validity

for equations in the extended

Woodworth model. (a) Plane-wave

incidence and antipodal ears. (b)

Plane-wave incidence and general ear

angle. (c) Point source and general ear

angle. Angle c is defined by cos

c¼ 1/q¼ a/r. In the limit that

hE¼ 90�, (b) becomes equivalent to

part (a). In the limit that a/r is zero so

that c¼ 90�, (b) and (c) become the

same.
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30�< h< 60�, Eq. (b3) for 60�< h< 150�, and Eq. (b4) for

150�< h< 180�.
Geometrical descriptions of the regions are as follows:

(1) Region b1: Both ears are occluded and the path to the far

ear is in front.

(2) Region b2: Only the far ear is occluded and the path to

the far ear is in front.

(3) Region b3: Only the far ear is occluded and the path to

the far ear is in back.

(4) Region b4: Neither ear is occluded (the source must be

in back).

(5) Region b5: Both ears are occluded and the path to the far

ear extends from front to back.

The equations are as follows:

ITD ¼ 2a=cð Þ h½ �; (b1)

ITD ¼ a=cð Þ �p=2þ hþ hE þ cos h� hEð Þ
� �

; (b2)

ITD ¼ a=cð Þ 3p=2� h� hE þ cos h� hEð Þ
� �

; (b3)

ITD ¼ a=cð Þ cos h� hEð Þ � cos hþ hEð Þ½ �; (b4)

ITD ¼ 2a=cð Þ p� hE½ �: (b5)

The results from the formulas, as determined by the

appropriate regions in Fig. 4(b), are illustrated in Fig. 5,

which shows the dependence of ITD on azimuth for five dif-

ferent ear angles, 90�, 110�, 130�, 150�, and 170�. To be

sure, an anatomy with the ears only 20� apart at the back of

the head (ear angle of 170�) is fanciful, but it is included for

mathematical completeness.

In the special case that ear angle hE is 90�, Fig. 4(b)

shows that the equations progress directly up the left edge

from region b2 to region b3, as expected from Fig. 4(a).

Then the plot of ITD as a function of azimuth in Fig. 5 is the

familiar simple case (incident plane waves and antipodal

ears). The peak of the ITD function is at a maximum for this

ear angle of 90�, here 654 ls. For a general ear angle, the

peak of the ITD occurs at an azimuth of h¼ 180� hE, where

the source direction is exactly opposite to the far ear angle.

At this point, the ITD function has a discontinuous deriva-

tive, indicating that something has gone wrong.

1. Correcting the Woodworth model

What is wrong with the Woodworth model is that it con-

siders only the path around one side of the head. Because of

the exponential decay of creeping waves, it may be a reason-

able assumption to ignore the longer path when the path

lengths are quite different. But when the far ear is nearly op-

posite to the source direction, the path in front of the head

and the path in back are about the same length. Then waves

along both paths contribute about equally. The thin solid line

in Fig. 1 for 20 kHz actually shows the interference between

the two waves. The interference can be understood quantita-

tively: The oscillations away from the peak at 90� have an

expected periodicity of one wavelength, or 17 mm. For a

deviation d (in radians) away from 90�, the path length dif-

ference is 2ad. The thin solid line appears to have a periodic-

ity of about 6�, corresponding to a path length difference of

18 mm, close to the expected value of 17 mm.

When both paths contribute about equally, it is wrong to

include only one path. A more logical treatment adds the

creeping waves around both sides of the head. It is not hard

to add the two creeping waves for the simplest case—inci-

dent plane wave and antipodal ears—if the two path lengths

are so similar that the two waves can be assumed to have

the same amplitude. The solution for h near 90� is no

longer ITD¼ (a/c)(hþ sin h). Instead the explicit linear de-

pendence on h is cancelled, and the ITD becomes

ITD¼ (a/c)(p/2þ sin h), a result with a continuous deriva-

tive at h¼p/2.

One can go further using the fact that the creeping wave

amplitudes decay exponentially with distance around the cir-

cumference as exp(�h/d), where d is a constant of attenua-

tion. Then the solution to the sum of two creeping waves

leads to an ITD that depends on frequency, thereby losing

the important simplicity of the Woodworth model. However,

an expansion to lowest order in h� p/2 is again frequency

independent. In the limit that the incident angle approaches

90�, ITD¼ (a/c)[1þp/2� (2þ d)(h� p/2)2/(2d)]. Therefore

the top of the function is parabolic and no longer pointed.

C. Finite source distance

An alternative to the incident plane-wave is a point

source at a distance r from the center of the head as shown

in Fig. 3(c). The effects of finite source distance can be

expressed in terms of parameter q¼ r/a, which is the source

distance in units of the head radius (q� 1), and parameter

c¼ cos�1(a/r) (0� c� p/2). Figure 4(c) has labels for gen-

eral values of q and c, but the actual drawing corresponds to

the special case where q¼ 2 so that c¼ 60�. As shown in

Fig. 4(c), the finite distance causes a sixth region to drop

down from above h¼ 180�, with the following geometrical

description:

FIG. 5. ITD from the extended Woodworth formula as a function of plane-

wave source azimuth for five ear angles as shown. Parameters were

a¼ 87.5 mm, c¼ 344 000 mm/s.
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(1) Region c6: Both ears are occluded and the path to the far

ear begins with a source in back. The geometrical

descriptions of the other regions in Fig. 4(c) are the same

as for the corresponding regions in Fig. 4(b). There are

two intersections of interest in Fig. 4(c). The lower inter-

section (at h¼ 60�) occurs for hE¼ (180þ c)/2. The

higher intersection (at h¼ 180�) occurs for hE¼ 180� c.

In general, these intersections occur at different values

of hE, but for the special case shown, where c¼ 60�,
they happen to be the same.

The equations for ITDs are as follows:

ITD ¼ 2a=cð Þ h½ �; (c1)

ITD ¼ a=cð Þ½hþ hE � cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 � 2q cos h� hEð Þ

p
�; (c2)

ITD ¼ a=cð Þ½2p� c� h� hE þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 � 2q cos h� hEð Þ

p
�; (c3)

ITD ¼ a=cð Þ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 � 2q cos hþ hEð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2 � 2q cos h� hEð Þ

p
�; (c4)

ITD ¼ 2a=cð Þ p� hE½ �; (c5)

ITD ¼ 2a=cð Þ p� hE½ �: (c6)

Although the equations for regions c5 and c6 are the

same, they apply to distinct geometrical situations and dis-

connected regions in Fig. 4. Region c1, with no distance de-

pendence, was identified by Woodworth (1938) as the

correct solution for a source close to the head but without

qualification or definition of “close.” Region c3 was identi-

fied by Molino (1973).2

D. Illustrations

The formulas, as determined by the appropriate regions,

are illustrated in Figs. 6 and 7 which, like Fig. 5, show the

dependence of ITD on azimuth for five different ear angles,

90�, 110�, 130�, 150�, and 170�.
The condition q¼ 1 in Fig. 6, where the source is on the

surface of the head, leads to particular insight. In this case,

angle c becomes zero. Then region c4 disappears off the top

of Fig. 4 and regions c2 and c3 shrink to zero size. Then as h
increases from 0� to 180�, the applicable regions are c1, c5,

and c6. For ear angles near 90�, regions c1 and c5 dominate,

which is why Woodworth recommended Eq. (c1) for sources

close to the head. The flat regions in Fig. 6 (region c5) begin

and end at 180� hE and hE.

The condition q¼ 2, where the source distance is twice

the head radius, corresponds to the particular conditions

used in Fig. 4(c). The ITD is shown in Fig. 7, where it is evi-

dent that the ITD function is a mixture of Fig. 6 (q¼ 1), with

long flat regions in the middle, and Fig. 5 (q¼1), with

smaller peaks and slowly dropping ITD as h approaches

180�. Figure 7 shows that as a crude guide to intermediate

values of q, one can begin with the extreme values for q in

Figs. 5 and 6 and interpolate by eye.

As a check on the calculations, we considered the condi-

tion q¼ 1000, where the source is so far from the head that

the plane-wave approximation applies well. The calculation

from the formulas of Sec. III C agree with those from

Sec. III B, and Figs. 4(b) and 5 apply.

IV. SUMMARY

The Woodworth model and formula for the ITD around

a spherical head were compared with the exact solution for

the ITD from the diffraction formula. It was concluded that

for tonal or narrow-band sources, the low-frequency limit of

the diffraction formula is a better estimate of the ITD than

the Woodworth formula for frequencies below 0.8 kHz. The

Woodworth formula provides a better estimate for frequen-

cies above 1.5 kHz. Between 0.8 and 1.5 kHz, the relative

error depends on azimuth.

FIG. 6. ITD from the extended Woodworth formula for five ear angles as

shown for a source on the surface of the head, q¼ 1.

FIG. 7. ITD from the extended Woodworth formula for five ear angles as

shown for a source of sound located at twice the head radius, q¼ 2.
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The characteristic kink produced by the Woodworth for-

mula was shown to be an artifact without realistic physical

foundation. As a frequency-independent equation, the

Woodworth formula is valuable for broadband noise or

clicks or tones with high frequency. Using the Woodworth

model in those cases was made more practical by extending

it so that it applies to all possible ear angles and to all possi-

ble source distances.

The geometry in this article has mainly been confined to

sources in the azimuthal plane because of the emphasis on

general ear angle. By contrast, if the ear angle is limited to

90�, sources with an elevation out of the azimuthal plane are

easily tractable through cones of confusion. The ITDs are

the same for all sources located on the surface of a cone of

confusion, independent of source distance. The cones of con-

fusion are uniquely defined by a single angle, the lateral

angle (Morimoto and Aokata, 1984; Macpherson and

Middlebrooks, 2002), which is a function of both azimuth

and elevation. However, when the ear angle differs from

90�, the surfaces of constant ITD become complicated

objects. The description of these objects is beyond the scope

of this article and would be an interesting topic for future

mathematical research.
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