

Materials issues in design, construction and operation of FRIB

Georg Bollen

Facility for Rare Isotope Beams

World-leading next-generation rare isotope beam facility in the US

Need for Rare Isotopes

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

World Wide Effort in Rare Isotope Science

Rare Isotope Science and Applications

Properties of nucleonic matter

- Classical domain of nuclear science
- Many-body quantum problem: intellectual overlap to mesoscopic science how to understand the world from simple building blocks

Nuclear processes in the universe

- Energy generation in stars, (explosive) nucleo-synthesis
- Properties of neutron stars, EOS of asymmetric nuclear matter

Tests of fundamental symmetries

 Effects of symmetry violations are amplified in certain nuclei

Societal applications and benefits

• Bio-medicine, energy, material sciences, national security

Production of Rare Isotopes af FRIB: In-flight Production

1. Accelerate heavy ion beam to high energy and pass through a thin target to achieve random removal of protons and neutrons in flight

Example: In-Flight Production at NSCL

FRIB - Historical Background

- 1999: ISOL Task Force Report proposes Rare Isotope Accelerator (RIA) concept
- 2003: RIA ranks 3rd in DOE 20-year Science Facility Plan
- 2005: DOE cancels draft of RIA-RFP (request for proposal)
- Rare Isotope Science Assessment Committee (RISAC) of the Academies to assess science case for rare isotope beam facility

2006: DOE cancels RIA and pursues a lower cost option

- RISAC endorses construction of a facility for rare isotope beams (FRIB) based upon a 200 MeV driver-linac
- 2007: NSAC makes construction of FRIB the 2nd highest priority for nuclear science
- 2008: DOE issues a Financial Assistance Funding Opportunity Announcement (FOA) for FRIB and selects the MSU application following a merit review and evaluation process (Dec. 11)
- 2009: Cooperative agreement between DOE and MSU to build FRIB

Specifications from DOE FRIB Funding Opportunity Announcement

- 200 MeV/u, 400 kW superconducting heavyion driver linac
- Initial capabilities should include fragmentation of fast heavy-ion beams combined with gas stopping and reacceleration
- Capable of world-class scientific research program at start of operation
- Accommodate 100 users at a time, 400-500 per year
- Designed, built and commissioned for a total project cost of <550 M\$

MSU-Proposed FRIB

FRIB Location on the MSU Campus

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Challenges

FRIB will have the highest-power heavy ion accelerator in the world: 400 kW, 200 MeV/u uranium, higher energies for lighter beams

- High power density in matter
 - Primary heavy ion beam interacts with material in targets, beam dumps, etc.
 - Deposited power densities up to 100 MW/cm³
 - Which materials are suitable?
- High radiation fields
 - Radiation damage of materials due to secondary particles (protons, neutrons)
 » Damage quite well-known, can be calculated
 - Radiation damage of material due to primary heavy ion beam
 - » Radiation damage due to heavy-ion matter interaction not well known, uncertain model predictions in relevant energy regime
 - Which materials are suitable? Path forward to better data and improved models?
- High rare isotope beam rates
 - High beam rates are key to new science
 - Detector systems needed that are radiation tolerant and fast new materials?
 - Fast solid catcher systems for low-energy beam production what are the best materials?

Superconducting RF Driver LINAC 400 kW, 200 MeV/u uranium, 610 MeV protons

Venus (LBNL) type ECR ion sources + LEBT+ RFQ-Linac

SRF LINAC:

Two types of quarter-wave Resonators (QWRs) at 80.5 MHz

One stripping station

Two types of Half-wave Resonators (HWRs) at 322 MHz

Multi-charge state acceleration

Upgradable to 400 MeV/u

Material Issues Beam Stripper

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRI

Why is it challenging to use carbon foils?

- Power density
 - Uranium beam power at stripper energy (17.5 MeV/u) is ~ 50 kW
 - Carbon foil equilibrium thickness is ~ 500 $\mu g/cm^2$ (2.2 μm thick)
 - Power deposited on the stripper foil ~ 660 W
 - For 5 mm diameter beam power density ~ 3.8 kW/mm³
 - 100 mm radius, 2000 rpm, T>2000K , Δ T>400K
- Thermal and mechanical issues
 - Sublimation
 - Thermal stress
 - Foils tend to get thinner for heavy ions
 - The typical failure modes are foil thinning (energy changes) and foil tearing
- Radiation damage
 - Deformation of lattice causes internal pressure in the foil

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science

Michigan State University

Production Target Facilities and Separator

- Self-contained target building
- State-of-the-art full remote-handling to maximize efficiency
- Target applicable to light and heavy beams (about 1/3 of power lost in target)
 - Rotating solid graphite target foreseen
 - Liquid-Li target (optional) for use with uranium beams
- Beam dump for unreacted primary beam for up to 400 kW beam power

High-power density, high radiation issues

Rare Isotope Production Target

- High reliability long lifetime
- Ideally one single target concept for all beams
- Beam power 400 kW at 200 MeV/u
- 200 kW in a ~ 0.6 8 g/cm² target
- 1 mm diameter beam-spot
 - max extension in beam direction ~ 50 mm
- Very high power density: ~ 20 60 MW/cm³
- Two solutions will be evaluated
- PRIMARY
 - Production target using carbon-based material
- SECONDARY
 - Liquid Lithium Production Target (not suitable for light beams due to low density)

R&D: W. Mittig (MSU)

Radiation-Cooled Multi-Slice Target

rotational speed as function of the wheel radius for ΔT =200K, 200kW,Carbon

10

20

radius[cm]

30

40

- Multi-slice target for increased radiation area
- Example: 200 kW, beam radius 1 mm, 10 slices of 1 mm thickness, spacing 5 mm, wheel diameter 20 cm, 8000 rpm

Material issues •Thermal stress and mechanical integrity •Radiation damage

Radiation Resistant Magnets

Options

- Radiation resistant magnets and metal-oxide Cable-In-Conduit-Conductor (CICC) NbTi
- Radiation resistant magnets using High **Temperature Superconductors (HTS) YBCO**

Neutron fluence on first quad:

2.5 x10¹⁵ n/cm² per year (1 MGy/yr) at 400 kW

U.S. Department of Energy Office of Science

Michigan State University

HTS Materials Issues

- High Temperature Superconductors (HTS) need to operate in high radiation environments
- Only a few irradiation studies
 - High-energy protons => actual damage in target area from neutrons
 - Comparing protons to neutrons not easy
 - Irradiations done at room temperature
- Assumptions made:
 - Materials behave like $Nb_3Sn =>$ no annealing of damage at room temp.
 - If materials behave like NbTi => much annealing at room temp
 » This leads to overestimation of radiation resistance and problems
- Displacements per atom (dpa)
 - Would be useful for comparing different irradiation systems, if we knew what it meant.
 - » Dpa calculated independent of temperature => annealing ignored
 - » Is there a way to use it?

Beam dump – stopping the primary beam

Requirements

- High power capability
 - Absorb up to 400 kW
- Long-lived or rapidly replaceable
 - >>1 year desirable
 - Remote-handling capable
- Adjustable position

Material issues

- High-power density
- Radiation damage
- Example: Copper dump (water cooled): Lifetime due to radiation damage <<1 month at 400 kW

Previous R&D studies

Al or Be-window stationary liquid-cooled dump

• Lifetime due to radiation damage \sim 3 months at 400 kW

FRIB Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Promising Concept

Rotating water-filled aluminum cylinder dump

- Beam stops in water, not in Al of shell
- Rotating shell- reduced thermal and radiation damage issues
- Simple models used to assess lifetime, thermal properties
 - Indicate lifetimes of years for drum (< 1 dpa/y, 5 dpa limit)
 - Indicate 400 KW power capability (400 - 600 rpm, 240 gpm water flow)
- Alternative coolants? Gallium, tin? Understand material compatibility.

Radiation Damage Experiment at NSCL/ORNL

Present radiation transport codes:

- Poor predictions of radiation damage for heavy ions.
- Only nuclear elastic and inelastic collisions contribute to the atomic displacement.
- No contribution from electro-magnetic processes. Latter could explain increased damage in case of fast heavy ions: Swift Heavy Ion Effect (SHI)
- Goal of experiment: determine role of SHI Effect.
 - ⁷⁶Ge at 130 MeV/nucleon on stack of aluminum foils (NSCL)
 - Material Analysis: Electric resistivity, Vicker's Hardness, TEM (ORNL)
 - Results not conclusive. Next: watercooled target for higher doses.

M. Kostin (MSU)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

A. Presenter, 7 Aug 2009, Slide 24

Beam Stopping

Beams for precision experiments at very low-energies or at rest Penning trap mass measurements, laser spectroscopy

- + reacceleration of rare isotopes
- Cyclotron gas stopper
 - Best for light and medium heavy isotopes
- Cryogenic linear gas stopper
 - · Best for heavy isotopes

Solid stopper

- For special elements and very high beam rates
- Example: ¹⁵O, I >10¹⁰/s

Suitable materials:

- Molecule formation desired or not (example ¹²C¹⁴O, ¹²C¹⁴O₂)
- High temperature for fast release
- Problems similar to those for ISOL beam production

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Reacceleration

Reaccelerated beams of rare isotopes from projectile fragmentation

Advanced n+ reaccelerator with EBIT charge breeder

- High-intensity EBIT as $1^+ \rightarrow n^+$ charge breeder
- Modern linear accelerator RT RFQ+ SRF linac
 - » Energies 0.3-3 MeV/u and 0.3-12 MeV/u uranium
 - » Higher energies for lighter ions

ReA3 is under construction

Detector systems

- Detector systems are needed for beam diagnostics and experiments. Desired properties: Radiation resistant, fast, high beam rate capability, and others.
- FRIB challenge are orders of magnitude higher beam rates compared to existing facilities

Example: NSCL beam monitor (NSCL is a 1-4 kW facility, FRIB 400 kW)

Diamond as charged particle detector

A. Stolz, B. Golding

grown at MSU (B. Golding) hetero-epitaxie CVD thickness 20 μm Ir back layer (300 Å)

very fast, radiation-hard detectors

FRI

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Segmented diamond detectors

Excellent timing resolution (20 ps) High beam rate capability 10⁷ ions/(s mm²)

Desirable for FRIB:

- Larger size (30 cm x 2 cm)
- High homogeneity
- Higher segmentation (1 mm pitch)

FRIB

Summary

FRIB will allow major advances in nuclear science and nuclear astrophysics

- Significant opportunities for the tests of fundamental symmetries
- Potential for important societal applications
- Campus-based location offers important educational and collaboration benefits
- Realization of FRIB requires R&D to reduce technical risk
 - High risks directly related to material properties
 - » High-power density in material
 - » High radiation that lead to material damage
 - Are there alternative materials?
 - Do we understand properties?

