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Facility for Rare Isotope Beams

World-leading next-generation rare isotope beam facility in the US
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Need for Rare Isotopes

New territory to
be explored with
next-generation

| RIB facilities
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World Wide Effort in Rare Isotope Science

Black Isotope Separation On-Line (ISOL) facilities (target fragmentation)
Red facilities using in flight-separation (projectile fragmentation)
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Rare Isotope Science and Applications

Properties of nucleonic matter
* Classical domain of nuclear science

» Many-body quantum problem: intellectual overlap to mesoscopic
science — how to understand the world from simple building blocks

Nuclear processes in the universe
* Energy generation in stars, (explosive) nucleo-synthesis

» Properties of neutron stars,
EOS of asymmetric nuclear matter
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Tests of fundamental symmetries

« Effects of symmetry violations are Nucloar RS
amplified in certain nuclei Structure Y
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Societal applications and benefits
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Production of Rare Isotopes af FRIB:
In-flight Production

1. Accelerate heavy ion beam to high energy and pass through a thin target
to achieve random removal of protons and neutrons in flight

— hot participant zone & —
projectile fragment
projectile /

target / l

2. Coollng by evaporation Rare isotope beam
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prolectlle fragment O
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Example: In-Flight Production at NSCL
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2009

FRIB - Historical Background

ISOL Task Force Report — proposes Rare Isotope Accelerator (RIA)
concept

RIA ranks 3" in DOE 20-year Science Facility Plan
DOE cancels draft of RIA-RFP (request for proposal)

Rare Isotope Science Assessment Committee (RISAC) of the Academies to
assess science case for rare isotope beam facility

DOE cancels RIA and pursues a lower cost option

RISAC endorses construction of a facility for rare isotope beams (FRIB) based
upon a 200 MeV driver-linac

NSAC makes construction of FRIB the 2"d highest priority for nuclear
science

DOE issues a Financial Assistance Funding Opportunity Announcement
(FOA) for FRIB and selects the MSU application following a merit review
and evaluation process (Dec. 11)

. Cooperative agreement between DOE and MSU to build FRIB
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Specifications from DOE FRIB
Funding Opportunity Announcement

= 200 MeV/u, 400 kW superconducting heavy-
lon driver linac

= Initial capabilities should include
fragmentation of fast heavy-ion beams
combined with gas stopping and
reacceleration

= Capable of world-class scientific research
program at start of operation

= Accommodate 100 users at a time,
400-500 per year

* Designed, built and commissioned for a total
project cost of <550 M$
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MSU-Proposed FRIB

* Driver linac with E/A > 200 MeV for all ions, Py, = 400 kW

— Easy to implement upgrade options (tunnel can house g
E/A = 400 MeV uranium driver linac, ISOL, multi-user capability ...) e =

» Use of existing NSCL
— Enables pre-term science
— Fast start of FRIB science
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FRIB Location on the MSU Campus
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Challenges

FRIB will have the highest-power heavy ion accelerator in the world:
400 kW, 200 MeV/u uranium, higher energies for lighter beams

= High power density in matter
* Primary heavy ion beam interacts with material in targets, beam dumps, etc.
» Deposited power densities up to 100 MW/cm3
« Which materials are suitable?

= High radiation fields
» Radiation damage of materials due to secondary particles (protons, neutrons)
» Damage quite well-known, can be calculated
« Radiation damage of material due to primary heavy ion beam

» Radiation damage due to heavy-ion matter interaction not well known, uncertain model predictions in
relevant energy regime

« Which materials are suitable? Path forward to better data and improved models?

= High rare isotope beam rates
* High beam rates are key to new science
» Detector systems needed that are radiation tolerant and fast — new materials?
 Fast solid catcher systems for low-energy beam production — what are the best materials?
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Superconducting RF Driver LINAC
400 kW, 200 MeV/u uranium, 610 MeV protons

Venus (LBNL) type ECR ion oT

. Solenoid
sources + LEBT+ RFQ-Linac ol R T Rower Goupler

SRF LINAC.: _
Two types of quarter-wave 2‘2%2%4'- |
Resonators (QWRs) at 80.5 :.:,.—'-——‘f/-""‘ I

MHz

One stripping station RF Pick-up

Access Port Cryodistribution

Cavity

Two types of Half-wave Waveguide

Resonators (HWRS) at 322
MHz

Multi-charge state acceleration W ampliiers

4"  and Electronics

Upgradable to 400 MeV/u Beam A/
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Material Issues Beam Stripper

* Increase the charge state of the

lons being accelerated 20
—> reduced total voltage installed in o ]
the accelerator §1°
—> reduced cost £
>
= A thin media is inserted -10
In the beam 20
-30 =20 10 0 10 20 30
X (mm)
i
— . Strippin
— Station
‘ BTN Delector
Beam /
Solid carbon stripper Li thin film R&D: E. Marti (MSU), J. Nolen (ANL)
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Why is it challenging to use carbon foils?

= Power density il
« Uranium beam power at stripper energy 6:
(17.5 MeV/u) is ~ 50 kW % 100
 Carbon foil equilibrium thickness is ~ 500 pg/cm? E
(2.2 um thick) 5 1000
» Power deposited on the stripper foil ~ 660 W Q
« For 5 mm diameter beam power density _
~ 3.8 kW/mm3 400 -
* 100 mm radius, 2000 rpm, T>2000K , AT>400K o ooz oos oo o o1 o1 014 ois o
» Thermal and mechanical issues
« Sublimation \
» Thermal stress Hoononee \
- Foils tend to get thinner for heavy ions e =
* The typical failure modes are foil thinning 100000 e
(energy changes) and foil tearing ;o m = ;,Qoo' e
= Radiation damage P |
- Deformation of lattice causes internal pressure T B |
in the foil \
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Production Target Facilities and Separator

= Self-contained target building

= State-of-the-art full remote-handling
to maximize efficiency

= Target applicable to light and
heavy beams (about 1/3 of power
lost in target)
 Rotating solid graphite target foreseen
* Liquid-Li target (optional) for
use with uranium beams

» Beam dump for unreacted primary
beam for up to 400 kW beam power

| Rotating Drum
High-power
Beamdump

High-power density, i
high radiation issues gl  =-a00kwW

e o Production Target
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Rare Isotope Production Target

= High reliability - long lifetime
= |deally one single target concept for all beam:
= Beam power 400 kW at 200 MeV/u
= 200 kW ina ~ 0.6 - 8 g/cm? target
= 1 mm diameter beam-spot
* max extension in beam direction ~ 50 mm
= Very high power density: ~ 20 - 60 MW/cm3

rotating carbon disk

Two solutions will be evaluated
» PRIMARY 200 MeV/u
uranium beam
» Production target using carbon-based material

= SECONDARY R&D: W. Mittig (MSU)

» Liquid Lithium Production Target
(not suitable for light beams due to low density)
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Radiation-Cooled Multi-Slice Target

= Multi-slice target for increased radiation area

= Example: 200 kW, beam radius 1 mm, 10 slices of 1 mm thickness,

spacing 5 mm, wheel diameter 20 cm, 8000 rpm

Material issues

*Thermal stress and mechanical integrity
*Radiation damage

FRIB

>
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Radiation Resistant Magnets

= Options
» Radiation resistant magnets and metal-oxide
Cable-In-Conduit-Conductor (CICC) NbTi

« Radiation resistant magnets using High
Temperature Superconductors (HTS) YBCO

Neutron fluence on first quad:
2.5 x10'> n/cm? per year (1 MGyl/yr) at 400 kW
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HTS Materials Issues

High Temperature Superconductors (HTS) need to operate in high radiation
environments

= Only a few irradiation studies
» High-energy protons => actual damage in target area from neutrons
« Comparing protons to neutrons not easy
* Irradiations done at room temperature

= Assumptions made:
 Materials behave like Nb;Sn => no annealing of damage at room temp.

* If materials behave like NbTi => much annealing at room temp
» This leads to overestimation of radiation resistance and problems

» Displacements per atom (dpa)

« Would be useful for comparing different irradiation systems, if we knew what it
meant.
» Dpa calculated independent of temperature => annealing ignored
» IS there a way to use it?
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Beam dump — stoppi

Requirements

= High power capability
» Absorb up to 400 kW

» Long-lived or rapidly replaceable
« >>1 year desirable
* Remote-handling capable

» Adjustable position

Material issues
« High-power density
« Radiation damage

Example: Copper dump (water cooled):
Lifetime due to radiation damage
<<1 month at 400 kW

| - Facility for Rare Isotope Beams
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Previous R&D studies

= Al or Be-window stationary liquid-cooled dump
« Lifetime due to radiation damage ~ 3 months at 400 kW

Possible stationary dump design "F

Werner Stein-4/21/2009- 3 gt
ﬁcmemmc
> N
Facility for Rare Isotope Beams
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Promising Concept

Rotating water-filled aluminum
cylinder dump

« Beam stops in water, not in Al of
shell

 Rotating shell- reduced thermal and
radiation damage issues

« Simple models used to assess
lifetime, thermal properties

* Indicate lifetimes of years for drum
(< 1 dpaly, 5 dpa limit)

* Indicate 400 KW power capability
(400 - 600 rpm, 240 gpm water flow)

= Alternative coolants? Gallium, tin?
Understand material compatibility.

y
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Radiation Damage Experiment at NSCL/ORNL

» Present radiation transport codes:
 Poor predictions of radiation damage for
heavy ions.

* Only nuclear elastic and inelastic
collisions contribute to the atomic
displacement.

* No contribution from electro-magnetic
processes. Latter could explain increased
damage in case of fast heavy ions:

Swift Heavy lon Effect (SHI)

= Goal of experiment: determine role of
SHI Effect.

« /6Ge at 130 MeV/nucleon on stack of
aluminum foils (NSCL)

» Material Analysis: Electric resistivity,
Vicker's Hardness, TEM (ORNL)

» Results not conclusive. Next: water-
cooled target for higher doses.

Facility for Rare Isotope Beams
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Beam Stopping

Beams for precision experiments at very low-energies or at rest
Penning trap mass measurements, laser spectroscopy
+ reacceleration of rare isotopes

= Cyclotron gas stopper

» Best for light and medium heavy isotopes
= Cryogenic linear gas stopper

» Best for heavy isotopes

+«———— Cyclotron gas stopper

—~¢ ot
| SO | I d Sto p p er Two momentum compressiﬁs \’( ]

 For special elements and very high beam rates
« Example: 1°0, | >1019/s

Suitable materials:
 Molecule formation desired or not
I (example 12CHO, 20140,
LATRRAIRINIL » High temperature for fast release
* Problems similar to those for ISOL beam
production

150 MeV/u
fragment beam

™
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Reacceleration

Reaccelerated beams of rare isotopes from projectile fragmentation

Superconducting linac

EBIT charge
breeder

=
.
| o
o

12 MeV/u area “Cr 0.3-6.2 MeViu

U 0.3-3.2MeViu_g (Existing 2010)

@sv)

3 MeV/u area

ReA3 is under

Advanced n+ reaccelerator with EBIT charge breeder .
construction

— High-intensity EBIT as 1* - n* charge breeder

— Modern linear accelerator — RT RFQ+ SRF linac
» Energies 0.3-3 MeV/u and 0.3-12 MeV/u uranium
» Higher energies for lighter ions

™
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Detector systems

» Detector systems are needed for beam diagnostics and experiments.
Desired properties: Radiation resistant, fast, high beam rate capabillity,
and others.

* FRIB challenge are orders of magnitude higher beam rates compared
to existing facilities

Example: NSCL beam monitor (NSCL is a 1-4 kW facility, FRIB 400 kW)

new camera after 9 months use o ] Radiation-hard CID cameras
31 2015 Object radiation estimate (CID8710D1M, Thermo CIDTEC)

in target area:

31 2015 Object

neutron equiv. dose for
5pnA Kr beam (0.2 kW):

Rad / hour @ 50 cm distance

remote electronics in shielded area

radiation tolerance: >1MRad (7)

wemsma 2es| CAMeEra lifetime ~ 1 year
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Diamond as charged particle detector

A. Stolz, B. Golding

ohmic
contact
_ LE- .
rﬂ::,‘.g::;c &~ = discrim. time
particle -~ preamplifier
(DBA Il J_ j_ TAC
I =]
‘ l || l/
passive |
— U splitter D abc
bias fast
amplifier energy
Physical Property at 300 K Diamond Silicon
band gap [eV] 5.45 1.12
Electron mobility [cm” /Vs] 2200 1500
Hole mobility [cm” /Vs] 1600 600
Breakdown field [V/m] 10’ 3x10°
Resistivity [Qcm] >10" 2.3x10°
Dielectric constant gr 5.7 11.9
Thermal conductivity [W/em K] 20 1.27
Lattice constant [A] 3.57 543
Energy to remove an atom from the lattice [eV] 80 28
Energy to create an e-h pair [eV] 13 3.6

—>» very fast, radiation-hard detectors
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grown at MSU (B. Golding)
hetero-epitaxie CVD
thickness 20 um

Ir back layer (300 A)
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Segmented diamond detectors

Excellent timing resolution (20 ps)
High beam rate capability 107 ions/(s mm?)

48Ca, 60 MeV/u + 9Be

diamond strip detector
for time-of-flight
measurement

total rate on detector: 10 MHz
detector efficiency: 97%

dilamond stri
detector P target

particle identification plot
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Desirable for FRIB:

» Larger size (30 cm x 2 cm)

« High homogeneity

« Higher segmentation (1 mm pitch)
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Summary

» FRIB will allow major advances in nuclear science and nuclear astrophysics
« Significant opportunities for the tests of fundamental symmetries

 Potential for important societal applications

« Campus-based location offers important
educational and collaboration benefits

= Realization of FRIB requires
R&D to reduce technical risk

 High risks directly related to
material properties
» High-power density in material
» High radiation that lead to material damage

* Are there alternative materials?
» Do we understand properties?
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