MSU Center of Research Excellence in Complex
Materials (CORE-CM), established Fall 2009

CORE-CM develops teams across CNS, Engineering and Nano-Medicine

Center mission

The CORE-CM mission is to promote excellence in materials research on the MSU campus
through high quality multidisciplinary group research, infrastructure development, training
programs and technological innovation.

Developing groups competitive for federal
group and center calls, along with shared
infra-structure projects are primary goals.
Both academic and industry based groups are
promoted.

Some Research Groups (lead faculty):
Thermoelectric materials (Morelli)

Organic solar (Lunt, McCusker)
Nanotoxicology (Worden)

Ultrafast diffraction (Ruan)

Battery materials (Drzal)

Fuel cells (Barton, Reguera, Promislow)
Materials in extreme environments (Bollen)
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Other members of microscope MRI development team: (Berz, Crimp, Duxbury)
Also affiliated with NSCL/FRIB materials groups



New Frontiers in Sciences Enabled by fs-EM
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FRIB/NSCL — CORE-CM materials group (SPG)

Leverage unique MSU expertise and capabilities to address extreme materials problems of
critical local and national importance
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Isotope

Develop and study key materials under
extreme radiation, stress, temperature
conditions (Graphite, Diamond, Ti

a“OyS) ECE/COE

Production Engine.ering
Develop a broad MSU team to leverage N and Science cHewms/coE
NSCL (and future FRIB) beam conditions Physics
and MSU’s expertise in material science

and engineering Ultrafast Matter Theory PA/CNS

PA/CNs  Laser Studies and Radiation
of Materials Effect

Modeling

Physics and Astronomy (Duxbury, Ruan)

Grotjohn Use swift heavy ions to
(Boehlert) for nanolithography
and to create

National Superconducting Cyclotron Laboratory (Mittig, Stolz) . hostructured

Facility for Rare Isotope Beams (Bollen, Pellemoine, Ronningen) materials
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Segregation of nanoparticles to polymer thin
film surfaces and interfaces
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Physical interactions which control
nanoparticle segregation

* Entropy is gained when nano-particles segregate to
surfaces — e.g. relaxation of polymer confinement at

hard substrate.

* Long range dispersion forces play a key role.
Systems with similar refractive index have an
effective attraction. (monotonic dielectric ordering is
favored).

e CdSe nanoparticles have a low n alkane layer at the
surface. This leads to an effective dielectric constant
which is less than PS (1.59), favoring segregation to
the air/PS surface.

e CdSe with Pyridine coating anneal to a SiO2 (4nm) on
Si substrate.
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Characterization of NP-Polymer morphology |

-NP concentration profile: Reflectometry
-Characteristic domain size: SANS YR [ oo
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Kiel et al., Nanoparticle agglomeration...., PRL 2011
3-D real space models: Constrained optimization

H = —%;JijSiSj + aJdz|p®*(z) - p™(2)| + blPm-Pexl

Olds and Duxbury, Percolating bulk heterostructures...., PRE 2012



Donor: P3HT

First Reaction Method ®
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c-AFM hole Injection into fibrous P3HT (J. Sun, P.P. Zhang)

Giridharagopal, Ried,....Ginger,... Nanoletters (e.g. 2012)
Submicrosecond Time Resolution Atomic Force Microscopy for Probing Nanoscale Dynamics

C-AFM images of annealed (a-b)

and non-annealed (c-d) P3HT films.
(a,c) show the topology, and (b,d)
show the corresponding current maps

The c-AFM image showing topography of annealed sample
and IV-characteristic at fixed spots A and B
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c-AFM current maps and IV relations:
Nanofibers are clearly observed in annealed samples.

Different currents are measured on and off fiber.
Experimental Result for P3HT (J. Sun. at. al, 2012, preprint)



3D Continuum model of Hole Injection System

Poisson’s Equation
V- (V) = — My

Continuity Equations at steady state

v ‘ Jp — O
Drift-Diffusion Equations
Hole injection only and
anisotropic mobility JP-C — _qnp'up‘c(‘)_\lj — qu«C%
. b - "~ O¢ "0
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H. Sirringhaus et. Al., Nature , Vol 401, 1999



3D Continuum Device Simulation
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Mesoscale Priority Research Direction
Taming complexity from atoms to the mesoscale: NP/organic hybrids

Opportunity Approach

Nanoparticle(NP)/organic hybrids are the basis of many Direct self-assembly using dispersion forces, entropy and
energy harvesting, storage and utilization systems. The electrostatics toward either equilibrium or strongly metastable
functionality of these systems is controlled by NP structures. Polymer architecture, solvent and/or thermal
dispersion and segregation, interface structure, organic annealing etc to further control A->M structure. Combine
cystallinity etc. Taming this complexity through control scattering, reflectometry, AFM, SEM, TEM, nano-CT etc with

of synthesis from the atomic to micrometer (A->M) modeling to find percolating 3-D real space A->M models.

scales, guided by high precision static and dynamic Use integrated Ab-initio, Kinetic MC, and continuum

characterization and modeling would be transformative approaches with A->M model architectures to correlate

across a broad range of materials systems and devices. performance with morphology and hence with synthesis and
processing

Meso Challenge
_ _ Impact
- Synthesis and processing to control A->M structure

- Characterization methods to generate 3-D interconnected  Success in multiscale synthesis, integrated A->M

A->M models consistent with experimental data. characterization and multiscale modeling would open

- Characterization of the dynamics of charge transport many new opportunities for materials and device

across A->M length scales and fs to seconds time scales. optimization. NP/organic hybrids are a good place to start

- Modeling of charge generation and reactive transport in as they have a broad knowledge base, they exhibit a wide

experimentally consistent A->M architectures. range of novel physical and chemical phenomena, and

-Optimize A->M architectures for applications they are of interest for a broad range of energy and other
applications.

Contact: Phil Duxbury, MSU
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