Biocatalysis at multiscale carbon electrodes

Scott Calabrese Barton

Chemical Engineering & Materials Science, Michigan State University

scb@msu.edu

CNDA Seminar Michigan State University, March, 2008

Outline

- Introduction
- Mediated oxygen cathodes
- Multiscale carbon supports for glucose anodes
- Mixed-feed biofuel cell performance.

What is a Fuel Cell?

http://www.fuelcelltoday.com

- Converts externally-supplied fuel to electricity.
- Can be continuously or intermittently refueled.
- Reactions at both electrodes rely on
 - Catalysis,
 - Interfacial (heterogeneous) electron transfer
 - Reactant species transport

Microbial Biofuel Cells

Electron Conduction by Bacterial Nanowires

Gorby et al., PNAS 2006, 103, 11358.

Chaudhuri and Lovley, Nat. Biotechnol. 2003, 21, 1229.

Enzymatic Biofuel Cells

Applications

S. A. Calabrese Barton, J. Gallaway, and P. Atanassov, *Chemical Reviews*, November, 2004.

Implantable power

- » Relies on physiologically ambient glucose and oxygen
- » Chemical/temperature sensor/telemeter (<1 W/L, short term)
- » Muscle actuator (1-10 W/L, long-term)

Distributed power from ambient fuels

- » Relies on ambient sugars and air
- » Sugars other than glucose must be bioreformed.
 Multi-enzyme electrodes or external bioreformer.

Methanol micro fuel cells

- » Multistep, complete oxidation of methanol.
- » High-potential reduction of airborne oxygen.

Volumetric Current Density Comparison O2 Cathode Catalysts

...the activity of a costless cathode catalyst (per unit *volume* of supported catalyst, *i.e.*, A/cm³) for automotive applications needs to be no less than 1/10th of the current industrial Pt activity...

Gasteiger et al., Applied Catalysis B: Environmental 2005, 56, 9.

Catalyst	т (°С)	Potential (V/RHE)	TOF (e⁻/site·s)	S.D./10 ²⁰ (site/cm ³)	A/cm ³	W/cm ³
47% Pt/C ¹	80	0.8	25	3.2	1300	1000
Ideal Laccase	40	1.11	200	0.1	160	180
Mediated Laccase	40	0.7	200	0.01	32	22.4

- Biocatalysts not <u>yet</u> a challenger for automotive fuel cell catalysis (power density driven).
- Biocatalysts are better positioned for micro-scale and portable electronics (energy density driven).

Typical Enzyme Details

Property	Glucose Oxidase	Laccase	
Source	Aspergillus niger	Coriolus hirsutus	
Molecular weight	80,000	65,000	
Redox Center	FADH ₂ /FAD	Cu+/2+	
Redox potential (re: SHE)	-0.13	+0.82	
Ideal pH:	4-7	3	
Natural Substrates	Glucose, Oxygen	Lignin, Oxygen	

Glucose Oxidase

Laccase

Other enzymes (e.g. O₂-reducing copper oxidases)

Table 1. Redox Potentials of T1 Copper Site in Some Copper-Containing Enzymes (E^0 in mV vs SHE) and the pH at Which It Was Estalished⁹²

enzyme	E^{0} , mV (pH)	enzyme	E^{0} , mV (pH)
Laccases		Ascorbate Oxidase	
Polyporus versicolor	775–785 (pH 4.0)	Cucurbita pepo medullosa	344 (pH 7.4)
Polyporus pinsitus	760-790 (pH 4.0)	Cucumis sativus	350 (pH 7.4)
Coriolus hirsutus	750-850 (pH 4.0)		-
Rhizoctonia solani	680-730 (pH 4.0)	Ceruloplasmin	
Trametes versicolor	780-800 (pH 4.0)	human I	490-580 (pH 7.4)
Pycnoporus cinnabarinus	740-760 (pH 7.0)	bovine	370-390 (pH 7.4)
Myrothecium verrucaria	480-490 (pH 7.4)		-
Scytalidium thermophilum	480-530 (pH 7.0)	Bilirubin Oxidase	
Rhus Vernicifera	394–434 (pH 7.0)	Myceliophthora thermophila	450-480 (pH 7.0)

E. I. Solomon, U. M. Sundaram and T. E. Machonkin, Chem. Rev., 96, 2563-2605 (1996).

Mediated oxygen cathodes

Redox polymer mediators

Effect of Mediator Redox Potential

Rotating Disk Electrode (RDE) Studies

"Steady-State" Polarization

1 mV/s scan rate, 100 mM pH 4 citrate buffer, O₂-saturated, 40°C , 900 rpm rotation

Transport Model of Enzyme-Mediator Film

1.0

- Reaction rate within film limited by
 - » mediator electrode kinetics
 - » electron transport (mediated)
 - » reactant (O2) transport.
 - » Enzyme kinetics

$$R = \frac{k_{cat}E}{1 + \frac{K_M}{M_{red}} + \frac{K_S}{S}}$$

- » Experimentally obtain mediator transport parameter (D_{app})
- » Use 1D reaction-diffusion model to extract kinetic parameters (k_{cat}/K_M)

Osmium Loading and Charge Transport via Diffusion

Expression for charge transport when redox species are bound to supramolecular structure, yet not strictly immobile (bounded diffusion model):

$$D_{app} = \frac{1}{6}k_{ex}(\delta^2 + 3\lambda^2)C$$

For the redox polymer series, osmium loading determines charge transport.

CD_{app}^{1/2} determined by Cottrell Potential Step Experiments

Kinetics of Mediated Electron Transfer

Study of the Kinetic Mechanism of Mediator/Enzyme Interactions

Mediator Potential and Cell Power (SHE anode assumed)

21

Mediator Summary

Key parameters in redox polymer hydrogel mediator design

- » Redox potential
- » Redox center loading
- » Polymer charge
- Raw catalytic current density controlled significantly by mediated electron transport in turn controlled by redox center loading.
- Kinetics of electrocatalyzed oxygen reduction controlled by mediator redox potential
 - » relatively low overpotential (~200 mV) required for maximum catalytic rate.

Paths to higher power density

Enhanced species transport
» Gas diffusion

Multiscale Carbon Supports

[†]S. Calabrese Barton, Y. Sun, B. Chandra, S. White, and J. Hone, *Electrochem. Solid State Letts*. **10**(5) (2007).

Multiscale Carbon Supports

Material	Carbon paper	Nanotubes	
Surface area	Low	High	
Sizes of pores and fibers	Large	Small	
Structural stability	Excellent	Poor	

Opportunity: Create multiscale carbon structures to obtain combination of catalytic activity (nanoscale) species transport (macroscale).

Multiwall Nanotube Growth by CVD on Ohmically-heated Carbon Paper

Catalyst: Fe nano-particle

(diameter 1-5 nm)

Feed: CO, H₂

No Growth 1 min Growth 0.8kV 8.4mm 0.8kV 8.5mm x3.50 5 min 20 min 0.8kV 8.4mm x3.00k SE(M

J. Hone, M. Llaguno, M. Biercuk, A. Johnson, B. Batlogg, Z. Benes, J. Fischer, *Applied Physics A*, **74** (2002), 339. X. Sun, B. Stansfield, J. Dodelet, and S. Desilets, *Chemical Physics*, **363** (2002), 415.

Polarization of a Glucose Oxidase Anode

50 mM glucose, in pH 7.1 PBS buffer at 37.5 °C under N_2 , rotation speed 4000 rpm, 1 mV/s scan rate.

Effect of NT Growth Time

Limitations to Multiscale Approach

Catalyst Loading:

- » Maximum loading of mediator and enzyme within NT layer controls utilization.
- » NT pore size of ~20 nm comparable to enzyme size.
- » Current **plateau** expected at large growth time.

Reactant Transport:

- » NT growth reduces micron-scale porosity of carbon paper, inhibiting reactant transport.
- » Current maximum expected at large growth time.

Composite electrode model

Modifications for

- » Porous composite (solute diffusion)
- »Reactive film (gas diffusion)²
- Key Geometric parameters
 - »Thickness, volume fraction, fiber diameter (SDE)
 - » Gas-phase volume fraction (GDE)

- 1. P. N. Bartlett and K. F. E. Pratt, *J. Electroanal. Chem.*, **397**, 61-78 (1995).
- 2. J. Giner and C. Hunter, J. Electrochem. Soc., 116, 1124-1130 (1969)
- 3. S. Calabrese Barton, Electrochim. Acta, 50, 2145-2153 (2005).

Simulation of growth effect on electrode performance

Complete Mixed-feed biofuel cell

Flow Through Biofuel Cell (BASI LCFC Flow Cell)

pH Dependence of Anode and Cathode

50 mM glucose, in 0.15 M buffer at 37.5 °C under air, flow rate 16 mL/min.

Conclusions

- Biofuel cells are candidate power supplies in applications where low cost, activity to ambient fuels, and selectivity can be exploited.
- Major technical hurdles (<u>activity</u>, stability) can be overcome through biochemical and <u>materials</u> approaches.
- At present, electrochemical mediators lead to systems of maximum power but introduce complicating factors.

Acknowledgements:

- Group Members: Joshua Gallaway, Yuhao Sun, Hao Wen, Leena Chakraborty, Raman Ramanujam, Erik Mcclellan
- Collaborators: James Hone, Scott Banta
- Funding: National Science Foundation, Air Force Office of Scientific Research, ACS Petroleum Research Fund