
Band-resolved, phonon-mediated ultrafast demagnetization in MnBi2Te4

Hari Padmanabhan¹, Vladimir Stoica¹, Peter Kim², Maxwell Poore², Tiannan Yang¹, Xiaozhe Shen³, Alexander Reid³, Ming-Fu Lin³, Huaiyu Wang¹, Nathan Koocher⁴, Danilo Puggioni⁴, Seng-Huat Lee⁵, Aaron Lindenberg³, Zhiqiang Mao⁵, James Rondinelli⁴, Xijie Wang³, Long-Qing Chen¹, Richard Averitt², John Freeland⁶, and <u>Venkatraman Gopalan^{1*}</u>

¹Materials Science and Engineering, Penn State University, University Park, 16803, USA
²UC San Diego, La Jolla, 92093, USA
³SLAC National Laboratory, Menlo Park, 94025, USA
⁴Northwestern University, Evanston, 60208, USA
⁵Penn State University, University Park, 16803, USA
⁶Argonne National Laboratory, Lemont, 60439, USA
*E-mail: vgopalan@psu.edu

Fig. Multimodal probe of ultrafast demagnetization. Schematic illustrating the time-resolved experimental probes used to characterize ultrafast spin and lattice dynamics in $MnBi_2Te_4$. The lattice structure of $MnBi_2Te_4$ is shown with the itinerant *p* spins illustrated schematically using blue clouds, and localized *d* spins illustrated using arrows on Mn ions.

Magnetism in functional quantum materials provides a platform for the discovery of cooperative phenomena with applications in spintronics, magnetic memory, and quantum information. A comprehensive understanding of spins away from equilibrium, including their interplay with lattice and electronic excitations is key to achieving fundamental breakthroughs in this context. We study ultrafast melting of magnetic order in the layered antiferromagnetic topological insulator MnBi₂Te₄. We employ a multimodal experimental approach, wherein ultrafast electron diffuse scattering is used as a momentum-resolved probe of nonequilibrium phonon dynamics, and magneto-optic Kerr rotation and resonant soft X-ray reflectivity are used to directly measure ultrafast dynamics of conduction and localized spins, respectively. Our experiments reveal that ultrafast demagnetization occurs through a *p*-like itinerant spin subsystem, with optical phonons acting as the primary channel for the dissipation of spin angular momentum. Localized Mn $3d^5$ spins disorder by a distinct, much slower thermalization mechanism, due to the quenched orbital angular momentum. The simultaneous appearance of the disparate demagnetization timescales in both spin subsystems provides evidence of a strong exchange coupling between 3d localized spins and the *p*-like itinerant bands. Given the *p*-like nature of the topological surface states, our work not only provides a unified picture of nonequilibrium spin dynamics in MnBi₂Te₄, but also sheds light on the interatomic exchange pathways that enable magnetic topological phases.

PIPT7- 7th International Conference on Photoinduced Phase Transitions, Santa Fe, NM, USA, 15 – 19 June 2020