Coherent manipulation of materials near topological and ferroelectric phase transitions

M. Savoini¹, D. Soranzio¹, V. Ovuka¹, S. Houver¹, L. Boie¹, M. Kubli¹, M. Neugebauer¹, B. Burganov¹, J. Dössegger¹, W. F. Pedrini², S. Grübel², J. A. Johnson³, C. Dornes¹, E. Abreu¹, M. Porer², S. Song⁴, T. Sato⁴, P. Beaud², C. Vaz², M. C. Hoffmann⁴, H. Lemke², Y. Deng², R. Mankowsky², S. Zerhane², M. Sander², U. Staub², J. Krempasky², H. Dil⁵, G. Springholz⁶, Y. Vysochanski⁷, F. Cilento⁷, M. Peressi⁷, F. Parmigiani⁷ and <u>S. L. Johnson^{1,2}</u>

¹Institute for Quantum Electronics, Physics Department, ETH Zurich, Zurich 8093, Switzerland
²Paul Scherrer Institute, Villigen 5232, Switzerland
³Department of Chemistry, Brigham Young University, Provo, UT 84602, USA
⁴Stanford Linar Acclerator Laboratory, Menlo Park, CA 94025, USA
⁵Institute of Physics, EPFL, 1015 Lausanne, Switzerland
⁶Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitat Linz, 4040 Linz, Austria
⁷Uzhgorod National University, 88000 Uzhgorod, Ukraine
⁸University of Trieste, 34100 Trieste, Italy

*E-mail: johnson@phys.ethz.ch

In this presentation I will describe recent experiments that use a variety of methods, including timeresolved x-ray and THz spectroscopy, to address the question of how the excitation of large-amplitude coherent structural modes can give unque insights into the dynamics of materials near phase transitions where a key order parameter is tied to structure.

In measurements on the excited state of WTe_2 , we show that in addition to the strong excitation of a shear mode that modulates the transition to an inversion-symmetric structure, a variety of other coherent excitations are excited that have an important impact on the electronic properties of this Weyl-type semimetal. Time resolved x-ray diffraction offers a uniquely quantitative view of these additional modes that give insight into the transient electronic properties.

In the wide-bandgap ferroelectric $Sn_2P_2S_6$, we show using time-resolved x-ray diffraction that a broadband THz pulse drives partially softened structural modes at temperatures near the phase transition and can use these measurements to verify the order-disorder component of the transition. I then discuss recent experiments using a combination of electronic and THz excitation to drive coupled dynamics in the binary ferroelectric GeTe. Here we see evidence of coupling between the structural soft modes, in combination with a change of the interatomic potential toward the paraelectric phase. I discuss the potential of using such coupling for coherent structural control.

PIPT7- 7th International Conference on Photoinduced Phase Transitions, Santa Fe, NM, USA, 15 – 19 June 2020