Photo-induced insulator-to-metal transition in Ta₂NiSe₅ studied by time-resolved ARPES

<u>Takeshi Suzuki</u>^{1*}, Yasushi Shinohara^{2,3}, Yangfan Lu⁴, Mari Watanabe¹, Jiadi Xu¹, Kenichi L. Ishikawa^{2,3,5}, Hide Takagi^{4,6}, Minoru Nohara⁷, Naoyuki Katayama⁸, Hiroshi Sawa⁸, Masami Fujisawa¹, Teruto Kanai¹, Jiro Itatani¹, Takashi Mizokawa⁹, Shik Shin^{1,10,11}, and Kozo Okazaki^{1,10}

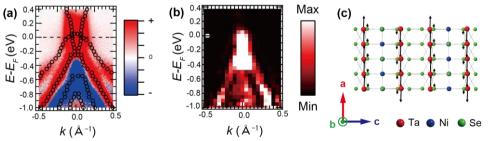
¹Institute for Solid State Physics, Univ. of Tokyo, Chiba, 277-8581, Japan. ²Photon Science Center, Univ. of Tokyo, Tokyo, 113-8656, Japan. ³Department of Nuclear Engineering and Management, Univ. of Tokyo, Tokyo, 113-8656, Japan. ⁴Department of Physics, Univ. of Tokyo, Tokyo 113-0033, Japan.

⁵Research Institute for Photon Science and Laser Technology, Univ. of Tokyo, Tokyo 113-0033,

Japan.

⁶ Max Planck Institute for Solid State Research, Stuttgart, 70569, Germany.

⁷ Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan.


⁸ Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan.

⁹ School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555, Japan.

¹⁰ OPERAND-OIL, AIST-UTokyo, Chiba, 277-8581, Japan.

¹¹Office of University Professor, Univ. of Tokyo, Chiba, 277-8581, Japan. *E-mail: takeshi.suzuki@issp.u-tokyo.ac.jp

 Ta_2NiSe_5 has been long proposed as an excitonic insulator, in which remarkable band flattening below the structural transition temperature at 328 K occurs as a result of the strong Coulomb attractive interactions between the conduction and valence bands. Recently, photo-excitation has been intensively employed to explore non-equilibrium phases, and many exotic phenomena have been reported such as photo-excitation of a collective mode or the photo-induced enhancement of an excitonic order. Our previous result also confirms that Ta₂NiSe₅ is an excitonic insulator from the characteristic dynamical behavior. In this work, we have used time-resolved ARPES (TARPES) to investigate the photo-excited non-equilibrium phases in Ta_2NiSe_5 . We have discovered that intense photo-excitation can induce an insulator-to-metal transition and a transient semimetalic state emerges as shown in Fig. 1(a), which could not be realized under equilibrium [1]. In order to gain insight on the mechanism of this phase transition, we have pursued the TARPES measurements with better signal-tonoise ratio enabled by use of the higher repetition rate laser system. We have found that multiple coherent phonons are excited by analyzing the oscillation behavior of time-dependence of TARPES intensity, and the amplitude for each phonon is significantly dependent on the momentum and energy in the ARPES images. Furthermore, we have proceeded to map out the amplitude for each frequency of the coherent phonons in energy-momentum space, of which technique we define as frequencydomain ARPES (Fig. 1(b),(c)). This technique relies on electron-phonon couplings, where coherent phonons generated by photo-excitation induce the modulations of TARPES intensity of the relevant bands, and allowed us to clearly identify the most relevant lattice modulation for the metallic state [2].

Figure 1: (a) Difference ARPES image after photo-excitation. (b) Frequency-domain ARPES for 2 THz and (c) corresponding phonon motion.

References:

[1] K. Okazaki, et al., Nat. Commun. 9, 4322 (2018).

PIPT7- 7th International Conference on Photoinduced Phase Transitions, Santa Fe, NM, USA, 15 – 19 June 2020 [2] T. Suzuki, et al., Phys. Rev. B 103, L121105 (2021).