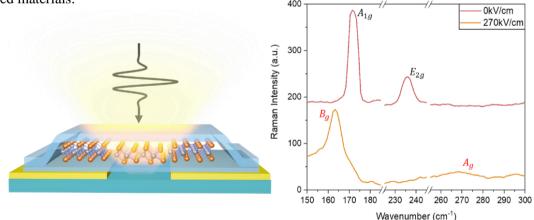
Terahertz-driven irreversible topological phase transition in twodimensional MoTe₂

<u>Jiaojian Shi</u>¹, Ya-Qing Bie^{2*}, Wei Chen³, Shiang Fang³, Jinchi Han⁴, Takashi Taniguchi⁵, Kenji Watanabe⁵, Vladimir Bulović⁴, Efthimios Kaxiras³, Pablo Jarillo-Herrero^{2*}, Keith A. Nelson^{1*}

¹Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

²Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA


³Department of Physics, Harvard, Cambridge, MA 02138, USA

⁴Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

⁵Advanced Material Laboratory, National Institute of Material Science, Tsukuba, Ibaraki 305-0044, Japan

*E-mail: kanelson@mit.edu; pjarillo@mit.edu; bieyq@mail.sysu.edu.cn

Stabilizing a novel transient or metastable phase of quantum materials in equilibrium has long been an attractive goal for ultrafast science. Recent experimental advances in terahertz (THz) field generation $(\sim 0.17-17 \text{ THz spectral range})$ have set the stage for dramatic advances in our ability to coherently drive quantum materials into novel states that do not exist as equilibrium phases by pumping key lowfrequency electronic and structural degree of freedoms.¹⁻⁵ However, THz-driven irreversible topological phase transitions are still unexplored. Large and doping-tunable energy barriers between multiple phases in two-dimensional transition metal dichalcogenides (2D TMDs) provide a testbed for THz polymorph engineering.^{6,7} Here we report the first experimental demonstration of an irreversible topological phase transition in 2D MoTe₂ from a semiconducting hexagonal phase (2H) to a predicted topological insulator distorted octahedral (1T') phase⁸ induced by metamaterial-enhanced ultrahighfield terahertz pulses⁹. This is achieved by a transient high carrier density due to carrier liberation and multiplication processes induced by a terahertz electric field, which is inaccessible to traditional electrostatic doping methods. Single-shot time-resolved second harmonic generation (SHG) microscopy following THz excitation reveals the topological phase transition dynamics with a timescale between 20 ps and 1 ns. This observation opens up new possibilities of THz-metamaterialsbased phase patterning and has implications for ultrafast THz control over topological phases in layered materials. 400

Figure 1: (Left panel) MoTe₂ THz metamaterial structure. MoTe₂ is encapsulated with top and bottom h-BN layers. THz field is enhanced by THz metamaterial by a factor of 20-100 and is found to drive and stabilize the 1T' phase in MoTe₂. (Right panel) Raman spectrum of monolayer MoTe₂ before and after THz irradiation. **B**_g mode at 163.5 cm⁻¹ and **A**_g mode at 268.6 cm⁻¹, the characteristic peaks of 1T' MoTe₂, appear after THz irradiations with incident THz field amplitude of 270 kV/cm. The characteristic peaks of 1T' MoTe₂ are labeled red and those of 2H MoTe₂ are labeled black.

References:

[1]*Nature* 487, 345-348 (2012) [2]*Nature* 449, 72 (2007) [3]*Nature* 530, 461-464 (2016) [4]*Science* 331, 189-191 (2011) [5]*Nature Materials* 12, 535 (2013) [6]*Nature Reviews Materials* 2, 17033 (2017) [7]*Nature* 550, 487 (2017) [8]*Science* 346, 1344-1347 (2014) [9]arXiv:1910.13609

PIPT7- 7th International Conference on Photoinduced Phase Transitions, Santa Fe, NM, USA, 15 – 19 June 2020