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Motivation

● RHIC data indicates jet-suppression in heavy-ion collisions
→ signal for a new phase of matter, namely ” QGP ”

● Flow data show that the matter is behaving like a nearly
perfect fluid
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Motivation

● Double-peak structure is observable for lower momenta
→ One possible consequence is the formation of

Mach cones
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The Relativistic Riemann problem

Initial conditions

What happens if you
remove the membran?

A shock wave travels to the 
right with a speed higher than 
the speed of sound and a 
rarefaction wave travels to the 
left with the speed of sound 



  

Numerical methods:
The Parton Cascade BAMPS

Boltzmann 
Approach for 
Multi-
Parton 
Scatteringsp∂ f x ,p=C22C23...

● Transport algorithm solving the Boltzmann 
equation using Monte Carlo techniques

● Stochastic interpretation of collision rates

● pQCD interactions, 2<->3 processes
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For isotropic elastic collisions:

Transport collision rate

Z. Xu & C. Greiner,
Phys.Rev.Lett.100:172301,2008

Numerical methods:
The Parton Cascade BAMPS

For this setup :
● Boltzmann gas, isotropic cross sections, elastic processes only
● Implementing a constant       , we locally get the cross section      :



  

T L=400MeV
T R=200MeV
t=0 fm /c

Initial conditions

● Two pressure regions seperated by a membran
● The velocities on both sides are zero

What happens if you remove the membran?

Numerical Results:
The Relativistic Riemann Problem



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

−c s

cs

v shock

v shockc s

● A shock wave travels to the right with a speed higher than the
speed of sound

● A rarefaction wave travels to the left with the speed of sound

Analytical Solution for a perfect fluid

Numerical Results:
The Relativistic Riemann Problem



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

Numerical Results:
The Relativistic Riemann Problem

Boltzmann solution

The IDEAL HYDRO LIMIT is reproduced by using a very
high cross section, i.e. a very small mean free path !!!



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

Numerical Results:
The Relativistic Riemann Problem

Boltzmann solution



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

Numerical Results:
The Relativistic Riemann Problem

Boltzmann solution



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

Numerical Results:
The Relativistic Riemann Problem

Boltzmann solution



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

Transition from ideal hydro to free streaming
● Shock plateau shrinks and vanish with strong viscous effects
● Shock front gets finite width and rarefaction wave moves faster than the 

speed of sound

Numerical Results:
The Relativistic Riemann Problem

Boltzmann solution



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

K local=mfp∂u


is SMALL in the region 
of the shock front

η/s < 0.2η/s < 0.2

η/s = 0.01

Good Agreement!!

E. Molnar, H. Niemi and D. Rischke
Eur.Phys.J.C60:413-429,2009
arXiv:0907.2583

vSHASTA
1 + 1 dimensional viscous hydro model
using the Israel-Stewart equations

Numerical Results:
The Relativistic Riemann Problem

Comparison between BAMPS and vSHASTA



  

T L=400MeV
T R=200MeV
t=3.2 fm /c

vSHASTA
1 + 1 dimensional viscous hydro model
using the Israel-Stewart equations K local=mfp∂u



is LARGE in the region 
of the shock front

η/s = 0.1E. Molnar, H. Niemi and D. Rischke
Eur.Phys.J.C60:413-429,2009
arXiv:0907.2583

Hydro breaks down

Numerical Results:
The Relativistic Riemann Problem

Comparison between BAMPS and vSHASTA



  

T L=400 MeV
T R=200 MeV

Evolution from free streaming to a 
shock

Shock Evolution

● A shock needs time to develop
● For early times it behaves like free streaming, for later

times it behaves like an ideal fluid
● Definition of a shock: Existence of a shock plateau



  

Knudsen number defined as:

K=
mfp

L

L=t⋅v shockcs

mfp=
10
3T

⋅s 
K=

10
3

1
t⋅v shockc s⋅T

⋅s  T is the lower temperature 
of the medium

2 systems behave the same, if they have the same Knudsen number

We define the characteristic length L

and use from kinetic theory

Scaling behaviour and
Global Knudsen Number



  
t=3.2 fm/c

/ s=0.1
K=0.053 t=1.6 fm /c

/ s=0.05

T=T 4=320MeV

Scaling behaviour and
Global Knudsen Number



  

v  z , t ,/ s=F  , K 

K f=
10
3

1
t f⋅vshockcs⋅T

⋅s =0.053

P4 /P0=0.41

The velocity profile 
is only a function of

=z / t

P 4 /P0

Kand      ,

P4 /P0=0.41

We define a shock when a 
shockplateau exist !!!

and universal for a 
given ratio            .

Scaling behaviour and
Global Knudsen Number



  

t f=
10
3

1
K f⋅vshockcs⋅T

⋅s 

T=350 MeV

Lifetime QGP ~ 6 fm/c

Is the formation of shocks (Mach cones) possible in gluonic 
matter?

The formation of Mach cones is 
in principle possible if η/s < 0.2

Scaling behaviour and
Global Knudsen Number



Medium

jet

η
s
=

1
4π

=0.08   T=400  MeV

E jet=20  GeV

interactions:  2 −> 2 with isotropic distribution of the collision angle

Mach Cones in BAMPS

Setup



  

Mach Cones in BAMPS:
Evolution

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=0.5fm/c



  

Mach Cones in BAMPS:
Evolution

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=1.0 fm/c



  

Mach Cones in BAMPS:
Evolution

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=1.5fm/c



  

Mach Cones in BAMPS:
Evolution

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=2.0fm/c



  

Mach Cones in BAMPS:
Evolution

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=2.5fm/c



  

• The results agree qualitatively with 
hydrodynamic and transport  calculations
→ B. Betz, PRC 79:034902, 2009
→ D. Molnar, arXiv:0908.0299v1

• Strong collective behaviour is observed
• A diffusion wake is also visible, 

momentum flows in direction of the Jet

η /s=1/4π
T= 400  MeV
E jet=20  GeV

t=2.5fm/c

Mach Cones in BAMPS:
Velocity profiles



  

Mach Cones in BAMPS:
More dissipative medium?

η / s=1/π=0.32 η / s=1.0

• Mach Cone structure vanish 
with more dissipation

• Collective behaviour also 
vanish

• Mach Cone angle changes, 
see next slides
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Mach Cones in BAMPS:
2-Particle Correlations



  

Mach Cones in BAMPS:
2-Particle Correlations

● Double-Peak structure is observable
● Absolute value of the ”Mach Cone angle” is not clear, depends 

on the background cut
● As stronger the collective behaviour of the medium, as larger 

the emission angle of the Mach Cone



  

Conclusion and Outlook

 

● We solve the relativistic Riemann problem using BAMPS from 
ideal hydro to free streaming

● We compared BAMPS and vSHASTA → BAMPS is good for the 
comparison to every viscous hydro model !!!

● We investigated the evolution of the shock wave
● Shock waves are in principle possible at RHIC or LHC

● Full 3-dimensional simulations of Mach Cones were done
→ Strong collective behaviour is observed

● Mach Cones vanish when medium is strong dissipative
● 2-particle correaltions are observed – double peak structure exist

Future Taks:
● Use BAMPS as comparison model for other viscous hydro models
● Investigate Mach Cones in more detail and in more realistic scenarios

→ expanding box, phase transition, 2-> 3 processes



  

Thank you for your attention



  

Mach Cones in BAMPS (2D)
η / s=0.01 preliminary



  

The relativistic Riemann problem

The relativistic hydrodynamic equations

∂N

=0

∂T
=0

●The local conservation of charge, energy and momentum

T 
= puu

− p g

N 
=n u

g
=diag 1,−1,−1,−1

u= ,v  with uu=1

=1 / 1−v2

with

 

●The equations of relativistic hydrodynamics of an ideal fluid in one dimension

∂t N
0
∂zv z N

0
=0

∂tT
0z∂ zv zT

0z=−∂z  p

∂tT
00∂z v zT

00=−∂z v z p

N 0
=n

T 00=2  p− p
T 0z=2  pv

p= p , nEquation of state



  

The relativistic Riemann problem

● Shock waves represent discontinuous solutions of ideal 
hydrodynamics. The partial derivatives of the charge density 
and the energy momentum are not right defined at that 
location

● Therefore using the Rankine-Hugeniot-Taub relations

n33v3=n44v4

3 p33
2 v3=4 p44

2v3

3 p33
2 v3

2 p3=4 p44
2v4

2 p4

● The quantities     
defined in the local 
rest frame of the 
shock front

Shock discontinuities

We get v shock=  p4− p33 p4

4−34 p3



  

Expansion into the vacuumExpansion into the medium

T R=350MeV T R=0 MeVT R=100MeV

T L=400MeV
t=1 fm/ c

Numerical Results:
Hydro Limits
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