

Institut für Theoretische Physik I



# Covariant transport approach for strongly interacting partonic systems



**Wolfgang Cassing** 

Jamaica, 03.01.2010



## **Compressing and heating hadronic matter:**



#### **Questions:**

What are the transport properties of the sQGP?
How may the hadronization (partons → hadrons) occur?
Where do we see traces of parton dynamics in HIC?

## From hadrons to partons



In order to study of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent dynamical description with > explicit parton-parton interactions (i.e. between quarks and gluons) > explicit phase transition from hadronic to partonic degrees of freedom > QCD equation of state (EoS) for the partonic phase

**Transport theory:** off-shell Kadanoff-Baym equations for the Green-functions  $G_h^{<}(x,p)$  in phase-space representation for the partonic and hadronic phase



**QGP** phase described by input from the

**Dynamical QuasiParticle Model (DQPM)** 



#### **The Dynamical QuasiParticle Model (DQPM)**

**Spectral functions for partonic degrees of freedom (g, q, q<sub>bar</sub>):** 

$$\rho(\omega) = \frac{\gamma}{\mathbf{E}} \left( \frac{1}{(\omega - \mathbf{E})^2 + \gamma^2} - \frac{1}{(\omega + \mathbf{E})^2 + \gamma^2} \right)$$

**gluon mass:** 
$$M^2(T) = \frac{g^2}{6} \left( (N_c + \frac{1}{2}N_f) T^2 + \frac{N_c}{2} \sum_q \frac{\mu_q^2}{\pi^2} \right)$$

gluon width:

$$\gamma_{\mathbf{g}}(\mathbf{T}) = \mathbf{N_c} \frac{\mathbf{g^2 T}}{4\pi} \, \ln \frac{\mathbf{c}}{\mathbf{g^2}}$$

 $N_c = 3$ 

quark width: 
$$\gamma_q(T) = \frac{N_c^2 - 1}{2N_c} \frac{g^2 T}{4\pi} \ln \frac{c}{g^2}$$

with 
$$E^2(p) = p^2 + M^2 - \gamma^2$$

Peshier, PRD 70 (2004) 034016; Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

# The running coupling g<sup>2</sup>

$${\bf g^2}({\bf T}/{\bf T_c}) = \frac{48\pi^2}{(11N_c-2N_f)\ln(\lambda^2({\bf T}/{\bf T_c}-{\bf T_s}/{\bf T_c})^2}$$

3 parameters:  $T_s/T_c=0.46$ ; c=28.8;  $\lambda=2.42$ 



fit to lattice (lQCD) entropy density:

→ quasiparticle properties ( $N_f$ =3;  $T_c$  = 0.185 GeV)



## **DQPM thermodynamics (N<sub>f</sub>=3)**



cf. V. D. Toneev, Heavy Ion Phys. 8 (1998) 83

#### **DQPM gives a ,perfect' description of IQCD results !**

#### **Transport properties of hot glue**

Why do we need broad quasiparticles? shear viscosity ratio to entropy density:

$$\eta^{\text{DQP}} = -\frac{d_g}{60} \int \frac{d\omega}{2\pi} \frac{d^3 p}{(2\pi)^3} \frac{\partial n}{\partial \omega} \rho^2(\omega) [7\omega^4 - 10\omega^2 p^2 + 7p^4]$$



 $\rightarrow$  otherwise  $\eta$ /s will be too high!

## **Time-like and space-like quantities**

#### some short-hand notations (useful for all single-particle quantities):

$$\tilde{\mathrm{Tr}}_{\mathbf{g}}^{\pm} \cdots = \mathbf{d}_{\mathbf{g}} \int \frac{\mathbf{d}\omega}{2\pi} \frac{\mathbf{d}^{3}\mathbf{p}}{(2\pi)^{3}} 2\omega \,\rho_{\mathbf{g}}(\omega) \,\Theta(\omega) \,\mathbf{n}_{\mathbf{B}}(\omega/\mathbf{T}) \,\Theta(\pm\mathbf{P}^{2}) \,\cdots \qquad \mathbf{gluons}$$

$$\tilde{\mathrm{Tr}}_{q}^{\pm} \cdots = d_{q} \int \frac{d\omega}{2\pi} \frac{d^{3}p}{(2\pi)^{3}} 2\omega \,\rho_{q}(\omega) \,\Theta(\omega) \,n_{F}((\omega - \mu_{q})/T) \,\Theta(\pm P^{2}) \cdots \qquad \mathbf{quarks}$$

$$\tilde{\mathrm{Tr}}_{\bar{q}}^{\pm} \cdots = d_{\bar{q}} \int \frac{d\omega}{2\pi} \frac{d^3 p}{(2\pi)^3} 2\omega \,\rho_{\bar{q}}(\omega) \,\Theta(\omega) \,n_F((\omega + \mu_q)/T) \,\Theta(\pm P^2) \,\cdots \qquad \text{antiquarks}$$

Time-like:  $\Theta(+P^2)$ : particles may decay to real particles or interact

q  $\gamma^*$   $e^+$   $e^+$ 

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Space-like:  $\Theta(-P^2)$ : particles are virtuell and appear as exchange quanta in interaction processes of real particles



## Differential quark ,density'



→ Large space-like contributions for broad quasiparticles !

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

### **Time-like and ,space-like' densities**

 $\begin{array}{ll} \text{,densities}^{\bullet} \colon & \mathbf{N}_{\mathbf{g}}^{\pm}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{g}}^{\pm} \ \mathbf{1}, & \mathbf{N}_{\mathbf{q}}^{\pm}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{q}}^{\pm} \ \mathbf{1}, & \mathbf{N}_{\mathbf{\bar{q}}}^{\pm}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{\bar{q}}}^{\pm} \ \mathbf{1} \\ \text{scalar densities:} & \mathbf{N}_{\mathbf{g}}^{\mathbf{s}}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{g}}^{+} \ \left(\frac{\sqrt{\mathbf{P}^{2}}}{\omega}\right), & \mathbf{N}_{\mathbf{q}}^{\mathbf{s}}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{q}}^{+} \ \left(\frac{\sqrt{\mathbf{P}^{2}}}{\omega}\right), & \mathbf{N}_{\mathbf{\bar{q}}}^{\mathbf{s}}(\mathbf{T}) = \tilde{\mathrm{T}}\mathrm{r}_{\mathbf{\bar{q}}}^{+} \ \left(\frac{\sqrt{\mathbf{P}^{2}}}{\omega}\right) \end{array}$ 



→more virtuell (space-like) than time-like gluons but more time-like than virtuell quarks !

## Time-like and ,space-like' energy densities

 $\mathbf{T}_{\mathbf{00,x}}^{\pm}(\mathbf{T}) = \tilde{T}r_{x}^{\pm} \omega$  **x: gluons, quarks, antiquarks** 



→ space-like energy density dominates for gluons;
→ space-like parts are identified with potential energy densities!

#### Potential energy versus scalar parton density

**potential energy:**  $V := T_{00,g}^{-} + T_{00,q}^{-} + T_{00,\bar{q}}^{-} = \tilde{V}_{gg} + \tilde{V}_{qq} + \tilde{V}_{qg}$ 



mean fields:  $U_s = dV_s/d\rho_s$   $U_0 = dV_0/d\rho_0$   $\rightarrow$  PHSD

• The dynamical quasiparticle model (DQPM) well matches IQCD (with only 3 parameters) !

• **DQPM** allows to extrapolate to finite quark chemical potentials

• DQPM separates lime-like quantities from space-like (interaction) regions (needed for off-shell transport)

● DQPM provides mean-fields for gluons and quarks as well as effective 2-body interactions → PHSD



# 1. Initial A+A collisions – off-shell HSD: string formation and decay to pre-hadrons



Strings – excited color singlet states (qq - q) or (q - qbar)(in HSD: pre-hadrons = hadrons under formation time  $\tau_F \sim 0.8$  fm/c)



2. Fragmentation of pre-hadrons into quarks: dissolve all new produced secondary hadrons to partons (and attribute a random color c) using the spectral functions from the Dynamical QuasiParticle Model (DQPM) approximation to IQCD - 4-momentum, flavor and color conservation --



## **II. PHSD: partonic phase**

### 3. Partonic phase:

- Degrees of freedom: quarks and gluons (= ,dynamical quasiparticles') (+ hadron)
- Properties of partons:
  - off-shell spectral functions (width, mass) defined by DQPM
- **EoS of partonic phase:** from lattice QCD (fitted by DQPM)
- elastic parton-parton interactions: using the effective cross sections from the DQPM
- inelastic parton-parton interactions:
- quark+antiquark (flavor neutral) <=> gluon (colored)
- gluon + gluon <=> gluon (possible due to large spectral width)
  - f quark + antiquark (color neutral) <=> hadron resonances
    Note: inelastic reactions are described by Breit-Wigner cross sections
    determined by the spectral properties of constituents (q,q<sub>bar</sub>,g) !

#### **parton propagation:**

with self-generated potentials  $U_q$ ,  $U_g$ 

Cassing, Bratkovskaya, PRC 78 (2008) 034919 Cassing, EPJ ST 168 (2009) 3



## **III. PHSD: hadronization**



**Based on DQPM: massive, off-shell quarks and gluons** with broad spectral functions hadronize to off-shell mesons and baryons:

gluons $\rightarrow$  q + qbarq + qbar $\rightarrow$  mesonq + q + q $\rightarrow$  baryon

**Hadronization happens:** 

- when the effective interactions become attractive <= from DQPM</p>
- for parton densities  $1 < \rho_P < 2.2$  fm<sup>-3</sup> :

Note: nucleon: parton density  $\rho_P{}^N = N_q / V_N = 3 / 2.5 \text{ fm}^3 = 1.2 \text{ fm}^{-3}$ meson: parton density  $\rho_P{}^m = N_q / V_m = 2 / 1.2 \text{ fm}^3 = 1.66 \text{ fm}^{-3}$ 

**Parton-parton recombination rate** = probability to form bound state during fixed time-interval  $\Delta t$  in volume  $\Delta V$ :

$$\frac{d^{4}P}{\Delta V\Delta t} \Rightarrow \frac{1}{\Delta V} \sum_{i,j \in \Delta V} flux \bullet |V_{q\bar{q}}(\rho_{P})|^{2} \qquad \qquad <= \text{ from DQPM} \\ \text{ and recomb. model}$$

Matrix element  $|V_{q\bar{q}}(\rho_P)|^2$  increases drastically for  $\rho_P \rightarrow 0 \implies \frac{d^4P}{\Delta V \Delta t}|_{\rho_P \rightarrow 0} \rightarrow \infty$ => hadronization successful !

## **IV. PHSD: hadronization**

#### **Conservation lows:**

- ♦ 4-momentum conservation → invariant mass and momentum of meson
- flavor current conservation  $\rightarrow$  quark-antiquark content of meson
- ♦ color + anticolor  $\rightarrow$  color neutrality
- large parton masses → dominant production of vector mesons or baryon resonances (of finite/large width)
   resonance state (or string) is determined by the weight of its spectral function at given invariant mass M

• hadronic resonances are propagated in HSD (and finally decay to the groundstates by emission of pions, kaons, etc.) → Since the partons are massive the formed states are very heavy (strings) → entrin the hadronization phase !

#### 5. Hadronic phase:

hadron-string interactions -> off-shell transport in HSD

## V. PHSD: Hadronization details

#### Local off-shell transition rate: (meson formation)

$$\frac{dN_m(x,p)}{d^4xd^4p} = Tr_q Tr_{\bar{q}} \ \delta^4(p - p_q - p_{\bar{q}}) \ \delta^4\left(\frac{x_q + x_{\bar{q}}}{2} - x\right)$$
$$\times \omega_q \ \rho_q(p_q) \ \omega_{\bar{q}} \ \rho_{\bar{q}}(p_{\bar{q}}) \ |v_{q\bar{q}}|^2 \ W_m(x_q - x_{\bar{q}}, p_q - p_{\bar{q}})$$
$$\times N_q(x_q, p_q) \ N_{\bar{q}}(x_{\bar{q}}, p_{\bar{q}}) \ \delta(\text{flavor, color}).$$

#### using

$$Tr_j = \sum_j \int d^4x_j d^4p_j / (2\pi)^4$$

$$\sqrt{< r^2 >} = 0.66~{\rm fm}$$

Cassing, Bratkovskaya, PRC 78 (2008) 034919 Cassing, EPJ ST 168 (2009) 3

## **Application to nucleus-nucleus collisions**

#### central Pb + Pb at 158 A GeV

#### energy balance

#### particle balance



only about 40% of the converted energy goes to partons; the rest is contained in the ,large hadronic corona!

W.C., E.L.B.: NPA 831 (2009) 215

## **Proton stopping at SPS**



#### →looks not bad in comparison to NA49, but not sensitive to parton dynamics!

## **Rapidity distributions of** $\pi$ , K<sup>+</sup>, K<sup>-</sup>



**b** pion and kaon rapidity distributions become slightly narrower

## **PHSD: Transverse mass spectra at SPS**

**Central Pb + Pb at SPS energies** 



**③** PHSD gives harder spectra and works better than HSD at top SPS energies

**B** However, at low SPS (and FAIR) energies the effect of the partonic phase is NOT seen in rapidity distributions and m<sub>T</sub> spectra

#### **Rapidity distributions of strange baryons**



similar to HSD, reasonable agreement with data

## **Rapidity distributions of (multi-)strange antibaryons**



enhanced production of (multi-) strange anti-baryons in PHSD

## **Centrality distributions of (multi-)strange (anti-)baryons**



enhanced production of (multi-) strange antibaryons in PHSD

#### Number of s-bar quarks in hadronic and partonic matter

#### Number of s-bar quarks in antibaryons for central Pb+Pb collisions at 158 A GeV from PHSD and HSD



→ significant effect on the production of (multi-)strange antibaryons due to a slightly enhanced s-sbar pair production in the partonic phase from massive time-like gluon decay and a larger formation of antibaryons in the hadronization process!

#### partonic energy fraction vs centrality and energy



#### →Dramatic decrease of partonic phase with decreasing energy and centrality !

# **Summary of part II**

• PHSD provides a consistent description of off-shell parton dynamics in line with IQCD; the repulsive mean fields generate transverse flow

• The dynamical hadronization in PHSD yields particle ratios close to the (GC) statistical model at a temperature of about 170 MeV

• The elliptic flow  $v_2$  scales with the initial eccentricity in space as in ideal hydrodynamics

• The Pb + Pb data at top SPS energies are rather well described within PHSD including baryon stopping, strange antibaryon enhancement and meson  $m_T$  slopes

• At FAIR energies PHSD gives practically the same results as HSD (except for strange antibaryons) when the IQCD EoS (where the phase transition is always a cross-over) is used



• Is the critical energy/temperature provided by the IQCD calculations sufficiently accurate?

• How to describe a first-order phase transition in transport ?

• How to describe parton-hadron interactions in a ,mixed' phase?



in particular to

**Elena Bratkovskaya** (dynamical hadronization and application to A+A reactions)

Sascha Juchem (off-shell transport)

Andre Peshier (DQPM)

and the numerous theoretical and experimental friends and colleagues !

