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Compressing and heating hadronic matter:

sQGP

5555

Questions:

®What are the transport properties of the sQGP?
®How may the hadronization (partons = hadrons) occur?
®Where do we see traces of parton dynamics in HIC?



From hadrons to partons Y 0% 0000

In order to study of the phase transition from o
hadronic to partonic matter — Quark-Gluon-Plasma —
we need a consistent dynamical description with

» explicit parton-parton interactions (i.e. between quarks and gluons)
»explicit phase transition from hadronic to partonic degrees of freedom
» QCD equation of state (EoS) for the partonic phase

Transport theory: off-shell Kadanoff-Baym equations for the

Green-functions G~ (x,p) in phase-space representation
for the partonic and hadronic phase

—> | Parton-Hadron-String-Dynamics (PHSD)

QGP phase described by input from the

Dynamical QuasiParticle Model (DQPM)




The Dynamical QuasiParticle Model (DQPM)

Spectral functions for partonic degrees of freedom (g, q, q,,,):

. g? 1 N, < 2

gluon mass: M*(T) = = ((Nc + 5Ne) T2 + = Xq: W—g)

luon width: - g*T |, ©
gluon widthn: Ve (T) = N. - n 2 N, =3

N2 -1g?T ¢

uark width: ~_(T)=—F |
1 ol D)= oN. 4r M2

with E*(p)=p* +M?-y? Peshier, PRD 70 (2004) 034016;

Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)



The running coupling g2
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- quasiparticle properties (N=3; T, = 0.185 GeV)
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DQPM thermodynamics (N;=3)

Thermodynamics: entropy s = j—i - pressure P

energy density: ¢ =Ts— P
interaction measure:

W(T) — E(T) — 3P(T) — Ts — 4P 1QCD: M. Cheng et al.,
PRD 77 (2008) 014511
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cf. V. D. Toneev, Heavy Ion Phys. 8 (1998) 83

DQPM gives a ,perfect® description of 1QCD resulits !



Transport properties of hot glue

Why do we need broad quasiparticles?

shear viscosity ratio to entropy density:

d, (do d&’p on
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—> otherwise /s will be too high!



Time-like and space-like quantities

some short-hand notations (useful for all single-particle quantities):

de d3p
= / 3 (2m)E 2 Ps(w) ©(w) np(w/T) e(+P?) ... gluons
dw d*p 9
=d /z s 29 Pal@) () ne((w = i) /T) O(£P?) - quarks
3 o
Try - = d; ‘;’j (; f)’ 2w pz(w) OW) np((w + p1g)/T) O(E£P?) - antiquarks

Space-like: @(-P?): particles are virtuell
and appear as exchange quanta in
interaction processes of real particles

Time-like: @(+P?): particles may
decay to real particles or interact

et _
7/* e\"‘m \)/,/ e
e o~

Cassing, NPA 791 (2007) 365: NPA 793 (2007) 4 4



Differential quark ,density*

d 2 2
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il
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-> Large space-like contributions for broad quasiparticles !

Cassing, NPA 791 (2007) 365: NPA 793 (2007)



Time-like and ,space-like* densities

,densities*: NZ(T) =Trf 1, NE(T) = Trf 1 NE(T) = Tr
. S A N P )
scalar densities: Ni(T)=1:} ( - ) N(T) = Trf ( - ) N2(T) = Tt (
2.0 , | | | |
—N, ——N_ 5 —
: ~ g g
. Ls|——N, ——N, o
-
;0 1.0 —
*®
H* 05L _—
0.0 I

T/T_

—>more virtuell (space-like) than time-like gluons
but more time-like than virtuell quarks !




Time-like and ,space-like‘ energy densities

s~

Toox(T) = Trs w x: gluons, quarks, antiquarks

4

energy density / T
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—> space-like energy density dominates for gluons;
—> space-like parts are identified with potential energy densities!



Potential energy versus scalar parton density

potential energy: V :=Tg,, + Tooq + Toos = Vez + Vaa + Vae
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mean fields: U, =dV/dp, U,=dV,/dp, = PHSD



Summary of part I

® The dynamical quasiparticle model (DQPM) well matches 1QCD
(with only 3 parameters) !

® DQPM allows to extrapolate to finite quark chemical potentials

® DQPM separates lime-like quantities from space-like (interaction)
regions (needed for off-shell transport)

® DQPM provides mean-fields for gluons and quarks as well as
effective 2-body interactions 2 PHSD




I. PHSD: basic concepts

1. Initial A+A collisions — off-shell HSD:

string formation and decay to pre-hadrons
Strings — excited color singlet states
(qq - q) or (q — gbar)
(in HSD: pre-hadrons = hadrons under
formation time tg~ 0.8 fm/c)
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2. Fragmentation of pre-hadrons into quarks:
dissolve all new produced secondary hadrons to partons (and
attribute a random color ¢) using the spectral functions from the
Dynamical QuasiParticle Model (DQPM) approximation to 1IQCD
-- 4-momentum, flavor and color conservation --




I11. PHSD: partonic phase

3. Partonic phase:

»

»

NN o

Degrees of freedom:

quarks and gluons (= ,dynamical quasiparticles®) (+ hadron
Properties of partons:

off-shell spectral functions (width, mass) defined by DQPM
EoS of partonic phase: from lattice QCD (fitted by DQPM)

elastic parton-parton interactions:
using the effective cross sections from the DQPM

inelastic parton-parton interactions:
quark+antiquark (flavor neutral) <=> gluon (colored)
gluon + gluon <=> gluon (possible due to large spectral width)

quark + antiquark (color neutral) <=> hadron resonances
Note: inelastic reactions are described by Breit-Wigner cross sections
determined by the spectral properties of constituents (q,q,,..g) !

parton propagation:

with self-generated potentials U, U,
Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3



II1. PHSD: hadronization "81%2" 0 %

o e =
®e“"eo0
Based on DQPM: massive, off-shell quarks and gluons

with broad spectral functions hadronize to off-shell mesons and baryons:

gluons = q+ gbar q + gbar < meson
q+q+q = baryon

Hadronization happens:
®  when the effective interactions become attractive <= from DQPM
®  for parton densities 1 <pp< 2.2 fm? :

Note: nucleon: parton density ppN =Ng/ Vy=3/2.5 fm’=1.2 fm3
meson: parton density pp™=N,/V,_,=2/1.2 fm*=1.66 fm

Parton-parton recombination rate = probability to form bound state
during fixed time-interval At in volume AV:

d‘P 1 ) <= from DQPM
AVAt = AV igvﬂux. | an(p P)l and recomb. model

Matrix element |Vqlql(Pp)|2 increases drastically for pp->0 => d4_P| .
=> hadronization successful ! AVAE ™



IV. PHSD: hadronization

Conservation lows:

< 4-momentum conservation = invariant mass and momentum of meson
< flavor current conservation = quark-antiquark content of meson

/

< color + anticolor => color neutrality

® large parton masses = dominant production of vector mesons
or baryon resonances (of finite/large width)
® resonance state (or string) is determined by the weight of its
spectral function at given invariant mass M

® hadronic resonances are propagated in HSD (and finally decay to the
groundstates by emission of pions, kaons, etc.) = Since the partons are
massive the formed states are very heavy (strings) = entr: -
in the hadronization phase !

S. Hadronic phase:

hadron-string interactions —> off-shell transport in HSD




V. PHSD: Hadronization details

Local off-shell transition rate: (meson formation)

d*xd*p

xwq pq(Pq) wq pa(pa) vaal” Winlaq — wq,pg — pq)
XNy(xq,py) Nglxq, pg) o(flavor, color).

d:\'rrn T ~ )
(L: p) _ 'TT'Q'TT@ 64(}) — Pg — p{?) (‘)4 ( Lg + Lq )

using
Tr; = Z/d4;cj-d4pj-/(2ﬁ)4
-
W, : Gaussian in phase space V<12 > = 0.66 fm

Cassing, Bratkovskaya, PRC 78 (2008) 034919
Cassing, EPJ ST 168 (2009) 3



Application to nucleus-nucleus collisions

# |GeV]

central Pb + Pb at 158 A GeV

energy balance particle balance
000 —— Pb+Pb, 158 A GeV, b=1 fm I - 2000 — Pb+Pb, 158 A GeV, b=1 fm I__
3000 | r —E, —E _ _ 1500 _
i ~——E_ =——E, 2 i
2000 | = 5 1000 | partons -
z mesons
[ new B+Bbar
1000 | - 500
0 1 0
0 3 5 8 10 13 15 18 20 0 3 5 8 10 13 15 18 20
t [fm/c] t [fm/c]

only about 40% of the converted energy goes to partons;
the rest is contained in the ,large® hadronic corona!

W.C., E.L.B.: NPA 831 (2009) 215



Proton stopping at SPS

dN/dy
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=>looks not bad in comparison to NA49,
but not sensitive to parton dynamics!

Cassing & Bratkovskaya, NPA 831 (2009) 215




Rapidity distributions of n, K*, K

80 A GeV, 7% central

dN/dy

=» pion and kaon rapidity distributions become slightly narrower



PHSD: Transverse mass spectra at SPS
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© PHSD gives harder spectra and works better than HSD at top SPS energies

@ However, at low SPS (and FAIR) energies the effect of the partonic phase is
NOT seen in rapidity distributions and my spectra

Cassing & Bratkovskaya, NPA 831 (2009) 215



Rapidity distributions of strange baryons
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=» similar to HSD, reasonable agreement with data




Rapidity distributions of (multi-)strange antibaryons
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=» enhanced production of (multi-) strange anti-baryons in PHSD

Cassing & Bratkovskaya, NPA 831 (2009) 215



Centrality distributions of (multi-)strange (anti-)baryons
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=» enhanced production of (multi-) strange antibaryons in PHSD

Cassing & Bratkovskaya, NPA 831 (2009) 215



Number of s-bar quarks in hadronic and partonic matter

Number of s-bar quarks in antibaryons for central Pb+Pb collisions at
158 A GeV from PHSD and HSD

,» [ Pb+Pb, 158 A GeV, b=0.5 fm |
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=» significant effect on the production of (multi-)strange antibaryons due to
a slightly enhanced s-sbar pair production in the partonic phase from
massive time-like gluon decay and a larger formation of antibaryons in the
hadronization process!

Cassing & Bratkovskaya, NPA 831 (2009) 215



Perspectives at FAIR energies

partonic energy fraction vs centrality and energy
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—>Dramatic decrease of partonic phase with decreasing
energy and centrality !

Cassing & Bratkovskaya, NPA 831 (2009) 215



Summary of part 11

® PHSD provides a consistent description of off-shell parton dynamics in
line with 1QCD; the repulsive mean fields generate transverse flow

® The dynamical hadronization in PHSD yields particle ratios close to
the (GC) statistical model at a temperature of about 170 MeV

® The elliptic flow v, scales with the initial eccentricity in space as in
ideal hydrodynamics

® The Pb + Pb data at top SPS energies are rather well described within
PHSD including baryon stopping, strange antibaryon enhancement and
meson m; slopes

® At FAIR energies PHSD gives practically the same results as HSD
(except for strange antibaryons) when the 1QCD EoS (where the phase
transition is always a cross-over) is used



Open problems

® Is the critical energy/temperature provided by the IQCD
calculations sufficiently accurate?

® How to describe a first-order phase transition in
transport ?

® How to describe parton-hadron interactions in a ,mixed*
phase?



Thanks

in particular to
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application to A+A reactions)

Sascha Juchem
(off-shell transport)

Andre Peshier
(DQPM)

and the numerous theoretical and

experimental friends and colleagues !
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