QCD thermodynamics on the lattice: (approaching the continuum limit with physical quark masses)

Z. Fodor

University of Wuppertal

results of the Wuppertal-Budapest group

Nuclear Dynamics 2010, Ocho Rios, Jamaica

Outline

Introduction

- 2 The nature of the QCD transition
- 3 QCD transition temperature
- 4 The QCD equation of state

< 17 ×

Literature: discrepancies between T_c

Bielefeld-Brookhaven-Riken-Columbia Coll. (+MILC='hotQCD'):

M. Cheng et.al, Phys. Rev. D74 (2006) 054507

 T_c from both $\chi_{\bar{w}w}$ and Polyakov loop:

 $T_c = 192(7)(4) \text{ MeV}$

Wuppertal-Budapest group (WB):

Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B. 643 (2006) 46

chiral susceptibility: Polyakov and strange susceptibility: $T_c = 151(3)(3) \text{ MeV}$ $T_c = 175(2)(4) \text{ MeV}$

'chiral T_c ': \approx 40 MeV; 'confinement T_c ': \approx 15 MeV difference

both groups give continuum extrapolated results with physical m_{π}

Literature: discrepancies between T dependences

Reason: shoulders, inflection points are difficult to define? Answer: no, the whole temperature dependence is shifted

for chiral quantities \approx 35 MeV; for confinement \approx 15 MeV this discrepancy would appear in all quantities (eos, fluctuations)

150 MeV transition temperature: isn't it a bit too small? lattice works in V $\rightarrow \infty$, which gives much smaller $T_{c_{e}}$

Safe and unsafe lattice approaches

three very important issues for a safe lattice result:

- i. discretization effects; ii. continuum limit; iii. physical quark masses
- i. discretization effects: example of the $m_{ud}-m_s$ phase diagram

F.Karsch et al., Nucl.Phys.Proc. 129 ('04) 614; G.Endrodi et al. PoS Lat'07 182('07); de Forcrand et al., ibid 178

 n_{f} =3 case (standard action, N_{t} =4): critical M_{ps} \approx 300 MeV different discretization effects (stout or p4 action or N_{t} =6): critical M_{ps} drops even below 100 MeV (physical M_{ps} is between) \implies huge uncertainties: safe only in the continuum limit note: state of the art T=0 physics a \leq 0.06 fm; T>0 physics a \geq 0.1 fm_{Dac}

Safe and unsafe lattice approaches

ii. continuum limit: is there any way to show that it is safe? a. monitor asymptotic scaling (a^2) b. with different scale settings

 N_t =4,6: inconsistent, but N_t =6,8,10 consistent continuum limit independently of the quantity used to set the physical scale (MeV)

iii. physical quark masses are needed

(non-physical masses: only dimensionless ratios in the continuum) pion splitting (only one π instead of three) $\propto a^2 \Rightarrow$ mimics large M_{π} some actions are quite good at reducing this non-physical effect

Safe and unsafe lattice approaches

ii. continuum limit: don't depend on the quantity which fixes the scale monitor asymptotic scaling (a^2) with different scale settings

 N_t =4,6: inconsistent, but N_t =6,8,10 consistent continuum limit independently of the quantity used to set the physical scale (MeV)

iii. physical quark masses are needed to give results in MeV (non-physical masses: only dimensionless ratios in the continuum) pion splitting (only one π instead of three) $\propto a^2 \Rightarrow$ mimics large M_{π} some actions are quite good at reducing this non-physical effect =

Finite-size scaling theory

problem with phase transitions in Monte-Carlo studies Monte-Carlo applications for pure gauge theories ($V = 24^3 \cdot 4$) existence of a transition between confining and deconfining phases: Polyakov loop exhibits rapid variation in a narrow range of β

• theoretical prediction: SU(2) second order, SU(3) first order \implies Polyakov loop behavior: SU(2) singular power, SU(3) jump

data do not show such characteristics!

Finite size scaling in the quenched theory

look at the susceptibility of the Polyakov-line first order transition (Binder) \Longrightarrow peak width \propto 1/V, peak height \propto V

finite size scaling shows: the transition is of first order

The nature of the QCD transition

Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675

finite size scaling study of the chiral condensate (susceptibility)

$\chi = (T/V)\partial^2 \log Z/\partial m^2$

phase transition: finite V analyticity $V \rightarrow \infty$ increasingly singular (e.g. first order phase transition: height $\propto V$, width $\propto 1/V$) for an analytic cross-over χ does not grow with V

two steps (three volumes, four lattice spacings): a. fix V and determine χ in the continuum limit: a=0.3,0.2,0.15,0.1fm b. using the continuum extrapolated χ_{max} : finite size scaling

・ロ・ ・ 四・ ・ 回・ ・ 回・

QCD thermodynamics on the lattice: (approaching the conti

Z. Fodor QCD thermodynamics on the lattice: (approaching the continued of the continued of

Z. Fodor

QCD thermodynamics on the lattice: (approaching the conti

Z. Fodor

QCD thermodynamics on the lattice: (approaching the conti

Z. Fodor QCD thermodynamics on the lattice: (approaching the contin

The nature of the QCD transition: result

• finite size scaling analysis with continuum extrapolated $T^4/m^2\Delta\chi$

the result is consistent with an approximately constant behavior for a factor of 5 difference within the volume range chance probability for 1/V is 10^{-19} for O(4) is $7 \cdot 10^{-13}$ continuum result with physical quark masses in staggered QCD:

the QCD transition is a cross-over

Analytic QCD transition (cross-over): consequences

highly non-trivial $a \rightarrow 0$ result Y.Aoki, G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, Nature, 443 (2006) 675 analytic transition (cross-over) \Rightarrow it has no unique T_c : examples: melting of butter (not ice) & water-steam transition

above the critical point c_p and $d\rho/dT$ give different T_c s. QCD: chiral & quark number susceptibilities or Polyakov loop they result in different T_c values \Rightarrow physical difference

Discretization errors in the transition region

we always have discretization errors: nothing wrong with it as long as

a. result: close enough to the continuum value (error subdominant) b. we are in the scaling regime (a^2 in staggered)

various types of discretization errors \Rightarrow we improve on them (costs)

we are speaking about the transition temperature region interplay between hadronic and quark-gluon plasma physics smooth cross-over: one of them takes over the other around T_c

both regimes (low T and high T) are equally important improving for one: $T \gg T_c$, doesn't mean improving for the other: $T < T_c$

example: 'expansion' around a Stefan-Boltzman gas (van der Waals) for water: it is a fairly good description for T \gtrsim 300° claculate the boiling point: more accuracy needed for the liquid phase

Examples for improvements, consequences

analytic: how to reach the continuum free energy density at $T=\infty$?

Bielefeld: p4 action is essentially designed for this quantity $T \gg T_c$ MILC: asqtad is designed mostly for T=0 (but good at $T \gg T_c$, too) BW: stout-smeared link converges slower but in the a^2 scaling regime (e.g. extrapolation from N_t =8,10 provides a result within about 1%)

Chiral symmetry breaking and pions

transition temperature for remnant of the chiral transition: balance between the chirally broken and chirally symmetric sectors chiral symmetry breaking: 3 pions are the pseudo-Goldstone bosons

staggered QCD: 1 pseudo-Goldstone instead of 3 (taste violation) staggered lattice artefact \Rightarrow disappears in the continuum limit WB: stout-smeared improvement is designed to reduce this artefact

Setting the scale in lattice QCD

in lattice QCD we use $g_{,m_{ud}}$ and m_s in the Lagrangian ('a' not) measure e.g. the vacuum mass of a hadron in lattice units: $M_{\Omega}a$ since we know that $M_{\Omega}=1672$ MeV we obtain 'a' and T=1/ N_ta

Y.Aoki et al. [Wuppertal-Budapest Collaboration] JHEP 0906:088,2009

independently which quantity is taken (we used physical masses) \Rightarrow one obtains the same 'a' and T, result is safe

T>0 results: strange susceptibility

Compare the Wuppertal-Budapest results [Y.Aoki et al. JHEP 0906:088,2009] with 'hotQCD'

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12,(16) 'hotQCD': results with two different actions are almost the same WB: for large T one extrapolates according to the known a^2 behaviour WB: no change in the lattice results compared to our 2006 paper note, that the experimental value of f_K decreased by 3% since 2006

about 20 MeV difference between the results

T>0 results: chiral condensate

Compare the Wuppertal-Budapest results [Y.Aoki et al. JHEP 0906:088,2009] with 'hotQCD'

'hotQCD' results are on N_t =8, WB results are on N_t =8,10,12 'hotQCD': results with two different actions are almost the same WB: no lattice spacing dependence observed for N_t =8,10,12 WB: no change in the lattice results compared to our 2006 paper

about 35 MeV difference between the results

transition temperatures for various observables

	$\chi_{ar\psi\psi}/T^4$	$\chi_{ar{\psi}\psi}/T^2$	$\chi_{ar{\psi}\psi}$	$\Delta_{l,s}$	L	χ_s
WB'09	146(2)(3)	152(3)(3)	157(3)(3)	155(2)(3)	170(4)(3)	169(3)(3)
WB'06	151(3)(3)	-	-	-	176(3)(4)	175(2)(4)
BBCR	-	192(4)(7)	-	-	192(4)(7)	-

renormalized chiral susceptibility, renormalized chiral condensate Polyakov loop and strange quark number susceptibility

no change compare to our 2006 data (errors are reduced) note, that the experimental value of f_K decreased by 3% since 2006 Particle Data Group now gives $f_K=155.5(2)(8)(2)$ MeV (error 0.5%)

 r_0 is not directly measurable:

ETM:0.444(4) fm, QCDSF:0.467(6) fm, HPQCD&UKQCD:0.469(7) fm, PACS-CS:0.492(6)(+7) fm

Illustration: lattice artefacts due to pion splitting

we have seen: our action (WB) has less unphysical pion splitting than the asqtad (MILC) and far less than the p4 (Bielefeld) action

in the continuum limit: no problem; at $a \neq 0$ it mimics larger M_{π} "reproduce" the result of hotQCD with larger M_{π} (asqtad is better)

 $M_{\pi} \approx 220 \text{ MeV}$ (hotQCD) "corresponds" to $M_{\pi} \approx 410 \text{ MeV}$ (WB) asqtad (MILC) needs finer p4 (Bielefeld) needs much finer lattices in order to handle physical quark masses (suboptimal improvement)

Illustration: lattice artefacts due to pion splitting

go even closer to the continuum limit: N_t =16 (preliminary) compare WB and hotQCD with the hadron resonance gas model

Wuppertal-Budapest: nice agreement upto 160 MeV (almost T_c) hot-QCD: several sigma discrepancy reason: hotQCD action has large π -splitting \Rightarrow large hadron masses

Story of T_c (last 4 years) hotQCD versus Wuppertal

results in physical units (MeV) are meaningful only in the continuum limit (extrapolation) with physical quark masses

2006 claims: continuum limit results with physical quark masses many standard deviation discrepancy: statistically "impossible" our interpretation since 2006: BBRC result on T_c is "non-continuum" hotQCD preliminary: closer to continuum \Rightarrow more than 20 MeV drop trust a result: scaling behavior & independence of scale setting \Rightarrow

Z. Fodor

QCD thermodynamics on the lattice: (approaching the conti

Equation of state: preliminary results

our improved action: Symanzik gauge & stout smeared fermions physical quark masses and our line of constant physics can be used renormalization: G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, PoS Lat07 228 (2007) leading order (SB limit) normalization is also applied full temperature dependence upto 1 GeV is given for N_t =8 (monitor the continuum limit: soon 3 sensitive points with N_t =10,12)

hotQCD result has a larger charcteristic temperature (similar to T_c) hotQCD indicates a steaper (more singular) transition (similar to T_c)

Equation of state: preliminary results

our improved action: Symanzik gauge & stout smeared fermions physical quark masses and our line of constant physics can be used renormalization: G.Endrodi, Z.Fodor, S.D.Katz, K.K.Szabo, PoS Lat07 228 (2007) leading order (SB limit) normalization is also applied full temperature dependence upto 1 GeV is given for N_t =8 (monitor the continuum limit: soon 3 sensitive points with N_t =10,12)

hotQCD result has a larger charcteristic temperature (similar to T_c) hotQCD indicates a steaper (more singular) transition (similar to T_c)

Summary

- QCD transition: analytic cross-over (continuum with M_{π} =135 MeV)
- new (2009) results for the transition temperature
- three improvements since 2006
 - a. at T=0 all simulations are done with physical quark masses b. to verify that the results are independent of the scale setting we use 5 experimentally well-known quantites: f_K , f_π , m_{K^*} , m_Ω , m_Φ c. even smaller lattice spacings: N_t =12 (in one case N_t =16)
- all findings are in complete agreement with our 2006 results
- Particle Data Group reduced the experimental value of f_K : 3%
- discrepancy between Wuppertal-Budapest & 'hotQCD' results

 a. for the remnant of the deconfinement transition: about 20 MeV
 b. for the remnant of the chiral transition: about 35 MeV
 possible explanation: hotQCD has large discretization effects
- preliminary equation of state results N_t=8(10,12)

Lattice Lagrangian: gauge fields

 $\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + \bar{\psi} (D_{\mu} \gamma^{\mu} + m) \psi$

anti-commuting $\psi(x)$ quark fields live on the sites gluon fields, $A_{\mu}^{a}(x)$ are used as links and plaquettes

$$\begin{split} U(x,y) &= \exp\left(ig_s \int_x^y dx'^{\mu} A^a_{\mu}(x')\lambda_a/2\right) \\ P_{\mu\nu}(n) &= U_{\mu}(n)U_{\nu}(n+e_{\mu})U^{\dagger}_{\mu}(n+e_{\nu})U^{\dagger}_{\nu}(n) \end{split}$$

 $S = S_g + S_f$ consists of the pure gluonic and the fermionic parts

 $S_g = 6/g_s^2 \cdot \sum_{n,\mu,\nu} \left[1 - \operatorname{Re}(P_{\mu\nu}(n))\right]$

Lattice Lagrangian: fermionic fields

quark differencing scheme:

$$\begin{split} \bar{\psi}(\mathbf{x})\gamma^{\mu}\partial_{\mu}\psi(\mathbf{x}) &\to \bar{\psi}_{n}\gamma^{\mu}(\psi_{n+e_{\mu}} - \psi_{n-e_{\mu}}) \\ \bar{\psi}(\mathbf{x})\gamma^{\mu}D_{\mu}\psi(\mathbf{x}) &\to \bar{\psi}_{n}\gamma^{\mu}U_{\mu}(n)\psi_{n+e_{\mu}} + \dots \end{split}$$

fermionic part as a bilinear expression: $S_f = \bar{\psi}_n M_{nm} \psi_m$ we need 2 light quarks (u,d) and the strange quark: $n_f = 2 + 1$

(complication: fermion doubling \Rightarrow staggered/Wilson)

Euclidean partition function gives Boltzmann weights

$$\mathsf{Z} = \int \prod_{n,\mu} [dU_{\mu}(x)] [d\bar{\psi}_n] [d\psi_n] e^{-S_g - S_f} = \int \prod_{n,\mu} [dU_{\mu}(n)] e^{-S_g} \det(M[U])$$

Importance sampling

$$\mathsf{Z} = \int \prod_{n,\mu} [dU_{\mu}(n)] e^{-S_g} \det(M[U])$$

we do not take into account all possible gauge configuration

each of them is generated with a probability \propto its weight

importance sampling, Metropolis algorithm: (all other algorithms are based on importance sampling)

 $P(U \rightarrow U') = \min \left[1, \exp(-\Delta S_g) \det(M[U']) / \det(M[U])\right]$

gauge part: trace of 3×3 matrices (easy, without M: quenched) fermionic part: determinant of $10^6 \times 10^6$ sparse matrices (hard)

more efficient ways than direct evaluation (Mx=a), but still hard

T_c strongly depends on the geometry

nanotube-water doesn't freeze, even at hundred degrees below 0°C

exploratory study: A. Bazavov and B. Berg, Phys.Rev. D76 (2007) 014502 use 'confined' spatial boundary conditions: more like experiments

large deviation (upto 30 MeV) from the infinite volume limit if V $\rightarrow \infty$ is 150 MeV a 100 fm³ system might have 170 MeV

Scaling for the pion splitting

scaling regime is reached if a^2 scaling is observed asymptotic scaling starts only for N_t >8 (a \leq 0.15 fm): two messages a. N_t =8,10 extrapolation gives 'p' on the \approx 1% level: good balance b. stout-smeared improvement is designed to reduce this artefact most other actions need even smaller 'a' to reach scaling

Scaling of B_K in quenched simulations

HPQCD and UKQCD Collaborations, Phys. Rev. D73 (2006) 114502

 B_{K}^{NDR} (2 GeV) in the quenched approximation

unimproved action has large scaling violations asqtad action is somewhat better HYP smeared improvement \Rightarrow almost perfect scaling