Longitudinal Spin Physics with the PHENIX Detector at RHIC

Dave Kawall, RIKEN-BNL Research Center and University of Massachusetts on behalf of the PHENIX Collaboration

Longitudinal Spin Physics Motivation and Goals

- Proton spin sum rule : $\frac{1}{2} = S_q + S_g + L_q + L_g$ (infinite momentum frame) = $\frac{1}{2}\Delta\Sigma + \Delta g + L_q + L_g$
- \bullet Roughly 50% of the momentum is carried by the quarks
- Relativistic quark models predict $\Delta\Sigma\approx 0.6-0.7$
- But experiments suggest $\Delta\Sigma~pprox 0.25$, small in comparison \Rightarrow perhaps Δg is large
- Spin structure poses a major challenge to our understanding
- Experiments can help through measurements of the polarized parton distribution functions :

$$\begin{aligned} \Delta f(x) &= f_{+}(x) - f_{-}(x), \quad \text{as function of the momentum fraction } x\\ \Delta \Sigma &= \int_{0}^{1} \left[\Delta u(x) + \Delta \bar{u}(x) + \Delta d(x) + \Delta \bar{d}(x) + \Delta s(x) + \Delta \bar{s}(x) \right] dx\\ \Delta g &= \int_{0}^{1} g(x) dx \end{aligned}$$

- How do the polarized PDFs behave as $x \to 0$, as $x \to 1$? Do they evolve as pQCD predicts?
- What are the relative contributions of the valence quarks, sea quarks, gluons? (Pauli principle suggests $\Delta \bar{u} > 0, \ \Delta \bar{d} < 0$)
- How do we deal with orbital angular momentum, transverse spin effects?
- Lab frame versus infinite momentum frame description of components

How do we extract Δg from inclusive polarized proton-proton collisions at RHIC ?

• Acquire sensitivity to Δg by measuring asymmetries in particle production from longitudinally polarized protons :

$$\begin{aligned} A_{LL}^{\pi^0} &\equiv \frac{d\sigma(p_+p_+ \to \pi^0 X) - d\sigma(p_+p_- \to \pi^0 X)}{d\sigma(p_+p_+ \to \pi^0 X) + d\sigma(p_+p_- \to \pi^0 X)} &\equiv \frac{d\Delta\sigma}{d\sigma} \\ &= \frac{1}{P_1 P_2} \frac{N_{++} - RN_{+-}}{N_{++} + RN_{+-}}, \quad R = \frac{L_{++}}{L_{+-}} \end{aligned}$$

- To relate to Δg , can factorize pp collisions as convolution of :
 - (i) (universal) parton densities $f_a(x_a), f_b(x_b)$
 - (ii) hard partonic cross section $\hat{\sigma}$
 - (iii) fragmentation function $D_c^h(z)$
- Sensitive to gluon when a or b = gluon

$$\frac{d\Delta\sigma^{\vec{p}\vec{p}\to\pi X}}{dp_{T}d\eta} = \sum_{abc} \int dx_{a} dx_{b} dz_{c} \ \Delta f_{a}(x_{a},\mu_{f}) \ \Delta f_{b}(x_{b},\mu_{f}) \times \frac{d\Delta\hat{\sigma}^{ab\to cX}}{dp_{T}d\eta} \left(x_{a}P_{a},x_{b}P_{b},P_{\pi}/z_{c},\mu_{f},\mu_{f'}',\mu_{r}\right) D_{c}^{\pi} \left(z_{c},\mu_{f}'\right)$$
where $d\Delta\hat{\sigma}^{ab\to cX} = d\hat{\sigma}^{ab\to cX} \times \hat{a}_{LL}^{ab\to cX}$

How do we extract $\Delta g(x)$ from inclusive polarized pp collisions ?

- pQCD framework is successful in describing unpolarized cross-sections (when power corrections, others small)
- pQCD framework can be used to extract $\Delta g(x)$ from polarized pp collisions
- Need to measure Δg through variety of channels, over range in x and momentum transfer
- Measuring momentum fractions x_a and/or x_b improves sensitivity to $\Delta g(x)$
- \bullet Final states such as γ and jet remove some complexity from fragmentation process
- Δg extracted will have some factorization/renormalization scale dependence

PHENIX Specialty : $A_{LL}(\vec{p}\vec{p} \rightarrow \pi^0 X)$

- PHENIX has excellent capabilities for triggering and identifying π^0
- A_{LL} of π^0 , π^{\pm} has contributions from $\Delta g \times \Delta g$, $\Delta g \times \Delta q$, and $\Delta q \times \Delta q$

• At lower p_T (<< 5 GeV), A_{LL} of π depends on $(\Delta g)^2$

• Quark-gluon scattering starts to dominate for $p_T>5$ GeV, linear dependence on $\Delta g(x)$

• Identify π^0 from 2γ invariant mass peak, extract background fraction, r, and asymmetry

• Construct :

$$A_{LL}^{\pi^0} = \frac{A_{LL}^{\pi^0 + BG} - rA_{LL}^{BG}}{1 - r}$$

p _T Range	Run 6 Peak Yield (112-162 MeV)	Background Fraction		
2.0-3.0 GeV	35 x 10 ⁶ events	16%		
5.0-6.0 GeV	380 K events	8 %		
9.0-12.0 GeV	14 K events	6.3 %		

PHENIX measurements of $A_{LL}(\vec{p}\vec{p} \rightarrow \pi^0 X)$ at $\sqrt{s}=200 \text{ GeV}$

- Runs 5+6 $A_{LL}(pp \rightarrow \pi^0 X)$ at $\sqrt{s}{=}200~{\rm GeV}$
- PHENIX PRL 103, 012003 (2009)
- Uncertainties < 1% at $p_T < 5$ GeV (8.3% uncertainty in polarization not shown), $\delta R \approx ~7 imes 10^{-4}$
- Asymmetries smaller than best-fits to DIS data \Rightarrow smaller Δg

Model-dependent extraction of Δg from A_{LL}

- Using constraint on $\int_0^1 \Delta g(x) dx$, fit polarized PDFs in GRSV functional form to pDIS data
- For each value of integral Δg , calculated $A_{LL}^{\pi^0}$ compared with measurement, extracted χ^2

• Polarization uncertainty not too important, relative luminosity uncertainty is important

•
$$\Delta g_{GRSV}^{[0.02,0.3]}(\mu^2 = 4 \text{ GeV}^2) = 0.2 \pm 0.1 \pm 0.1 \ (\Delta \chi^2 = 1)$$

- $\Delta g_{GRSV}^{[0.02,0.3]}(\mu^2 = 4 \text{ GeV}^2) = 0.2^{+0.2}_{-0.8} \pm 0.1 \ (\Delta \chi^2 = 9)$
- Results favor a smaller Δg than pDIS data suggested, other functional forms for distribution : $-0.7 < \Delta g^{[0.02,0.3]} < 0.5$ for $\Delta \chi^2 = 9$

• Changes in scale $\mu = p_T$, $p_T/2$, $2p_T$ yield additional uncertainty $\pm 0.1(^{+0.1}_{-0.4})$ for $\Delta \chi^2 = 1(9)$

PHENIX measurements of $A_{LL}(\vec{p}\vec{p} \rightarrow \pi^0 X)$ at $\sqrt{s}=$ 62.4

- Run 6 $d\sigma(pp \rightarrow \pi^0 X)$ at $\sqrt{s}=$ 62.4 GeV
- PHENIX PRD 79, 012003 (2009)
- Cross section best described by NLL calculation

- Run 6 $A_{LL}(pp \rightarrow \pi^0 X)$ at \sqrt{s} =62.4 GeV
- PHENIX PRD 79, 012003 (2009)
- \bullet Lower \sqrt{s} accesses $\Delta g(x)$ at higher x
- Demonstrated need for NLL interpretation
- Not bad for 1 week of data!

PHENIX measurements of $A_{LL}(\vec{p}\vec{p} \rightarrow \eta X)$ at \sqrt{s} =200 GeV

- PHENIX has measured $A_{LL}(\vec{p}\vec{p} \rightarrow \eta X)$ at \sqrt{s} =200 GeV
- $\eta = \left(u\bar{u} + d\bar{d} 2s\bar{s}\right)/\sqrt{6}$ different flavor content than π^0
- Detect $\eta \rightarrow 2\gamma$, similar to π^0 analysis
- Branching fraction 39.3%, but easier to identify at high p_T than π^0
- Sensitive to Δg , independent and complementary to $A_{LL}(\vec{p}\vec{p} \rightarrow \pi^0 X)$

PHENIX measurements of $A_{LL}(\vec{p}\vec{p} \rightarrow h^{\pm}X)$ at $\sqrt{s}=62.4$ and 200 GeV

- Measured double spin asymmetry $A_{LL}^{pp \to h^{\pm}X}$ at $\sqrt{s}=62.4$ and $A_{LL}^{pp \to \pi^{\pm}X}$ at $\sqrt{s}=200$ GeV
- Hadrons with $p_T\gtrsim$ few GeV/c produced dominantly by quark-gluon scattering
- Asymmetry measurement important because of leading order sensitivity to Δg

• $A_{LL}^{\pi} \propto \Delta g \otimes \sum_{q,\bar{q}} (\Delta q \otimes D_q^{\pi})$, where $\Delta u \approx 0.8$, $\Delta d \approx -0.40$

•
$$A_{LL}^{\pi+} \propto \Delta g \otimes \left(\Delta u \otimes D_u^{\pi+} + \Delta \bar{d} \otimes D_{\bar{d}}^{\pi+} \gg 0 \right)$$

•
$$A_{LL}^{\pi-} \propto \Delta g \otimes \left(\Delta \bar{u} \otimes D_{\bar{u}}^{\pi-} + \Delta d \otimes D_d^{\pi-} \lesssim 0 \right)$$

$$\Rightarrow \quad \text{If } \Delta g > 0 : \ A_{LL}^{\pi^+} > A_{LL}^{\pi^0} > A_{LL}^{\pi^-}$$

 \bullet Sensitive to sign of Δg

 $\Rightarrow A_{LL}^{\pi+}$ maximum analyzing power for Δg

ullet Comparison of $A_{LL}^{\pi^0}$ versus $A_{LL}^{h^\pm}$ may be sensitive to sign of Δg .

 \bullet Probing Δg with different channels adds robustness to extraction of Δg

Experimental Results : A_{LL} of Charged Pions

- A_{LL} of charged pions with p_T from 5-12 GeV from pp collisions at \sqrt{s} =200 GeV
- Trigger on hadronic shower in EMCal, look for associated track and hit in RICH

 \bullet Run 9 results will reduce statistical uncertainty, can look for ordering of asymmetry, sign of Δg

Results for A_{LL}^{h+} at \sqrt{s} =62.4 GeV and Comparison with GRSV Model Predictions

• GRSV model $\Delta g(x) = g(x)$ (not shown on plot) is > 0.1 at $p_T =$ 3.75 GeV/c

- $\Delta g(x) = g(x)$ clearly excluded by the data, which favor smaller $\Delta g(x)$
- ullet Not bad for pprox 1 week of data!

Results for A_{LL}^{h-} at \sqrt{s} =62.4 GeV and Comparison with GRSV Model Predictions

• Asymmetries predicted for A_{LL}^{h-} smaller than those for A_{LL}^{h+}

- Measured A_{LL}^{h-} small, consistent with zero, no ordering of asymmetries apparent
- GRSV model $\Delta g(x) = g(x)$ (not shown on plot) clearly excluded by the data

PHENIX measurement of A_{LL} (Direct- γ)

- Direct- γ production 75% dominated by $q + g \rightarrow q + \gamma$ (gluon-Compton process)
- Theoretically clean extraction of Δg from asymmetry data, large analyzing power, sensitive to sign of Δg , linear in Δg
- Small cross-section (pprox 1 nb at p_T =5 GeV) \Rightarrow need high luminosity and polarization
- Different experimental techniques than hadronic final states (isolation cut)

- Prior to start of RHIC spin program, $\Delta g = 1-2$ at scale of 1 GeV quite typical
 - Restored consistency between measured quark contribution to proton spin and rel. const. quark model predictions
 - Supported by a variety of models; QCD sum rules, QCD counting rules at large x and color coherence at low-x, ...,
- Major impact of program : such large values of Δg seem to be excluded
- Global analysis of D. De Florian, R. Sassot, M. Stratmanm and W. Vogelsang, Phys. Rev. D 80, 034030 (2009) : integral of Δg from 0.05-0.2, using RHIC data, almost 0.

(From DSSV PRD 80, using $\Delta \chi^2 = 1$ from Lagrangian multiplier (hatched) and Hessian uncertainty estimates, and DSSV PRL 101, 072001 (2008).)

Impact of RHIC Spin Program on Δg from DSSV, PRD 80, 034030 (2009)

PHYSICAL REVIEW D 80, 034030 (2009)

- Truncated integral at $Q^2 = 10 \ GeV^2$, $\Delta g^{[0.001,1.0]} = 0.013^{+0.702}_{-0.314}$ $\Delta\chi^2/\chi^2 = 2\%$
- Truncated integral at $Q^2 = 10~GeV^2$, $\Delta g^{[0.05,0.20]} = 0.005^{+0.129}_{-0.164}$ $\Delta \chi^2/\chi^2 = 2\%$

EXTRACTION OF SPIN-DEPENDENT PARTON DENSITIES ...

IABLE IV.	Truncated first moments, $\Delta f_i^{A,and and and and full ones, \Delta f_i^{A}, of our polarized PDFs at various Q^2.$							
x range in Eq. (35)	Q^2 [GeV ²]	$\Delta u + \Delta \bar{u}$	$\Delta d + \Delta \bar{d}$	$\Delta \bar{u}$	$\Delta ar{d}$	$\Delta \bar{s}$	Δg	ΔΣ
0.001-1.0	1	0.809	-0.417	0.034	-0.089	-0.006	-0.118	0.381
	4	0.798	-0.417	0.030	-0.090	-0.006	-0.035	0.369
	10	0.793	-0.416	0.028	-0.089	-0.006	0.013	0.366
	100	0.785	-0.412	0.026	-0.088	-0.005	0.117	0.363
0.0–1.0	1	0.817	-0.453	0.037	-0.112	-0.055	-0.118	0.255
	4	0.814	-0.456	0.036	-0.114	-0.056	-0.096	0.245
	10	0.813	-0.458	0.036	-0.115	-0.057	-0.084	0.242
	100	0.812	-0.459	0.036	-0.116	-0.058	-0.058	0.238

A c1.[0.001→1] 1.6.11 . 1.0 . A . c1 o^2

- Significant uncertainties arise in extrapolation to $x \to 0$, and from scale dependence
- Such analyses indicate need to constrain Δg at low x, but asymmetries small and difficult to measure (RL)

- Reduce statistical uncertainties in current x-range : more data, higher beam polarization, more channels $(\pi^{\pm}, \eta, ...)$
- \bullet Change collision energy to extend x range
- Move from inclusive measurements to those with sensitivity to parton kinematics : γ -jet, jet-jet, hadron-jet (particularly with detection in forward region) : $x_{1,2} = p_T \left(e^{\pm \eta_3} + e^{\pm \eta_4}\right) / \sqrt{s}$

Spin Physics with Ws at RHIC

- Key measurements of the spin program : flavor separated $\Delta q(x)$ and $\Delta ar q(x)$
- Semi-inclusive polarized DIS experiments (SMC, HERMES, COMPASS) have made such measurements
- STAR and PHENIX can do it exploiting parity violation in W production in polarized pp collisions at high scale and independent of uncertainties in fragmentation functions
- Can also measure ratio $\bar{u}(x)/\bar{d}(x)$

- a) u always left-handed : Δu probed in polarized proton
- (b) \bar{d} always right-handed : $\Delta \bar{d}$ probed in polarized proton

(From Bunce et al. Annu. Rev. Nucl. Part. Sci. **50** 525 (2000))

- $\bullet~W$ predictions from RHICBOS (Nadolsky and Yuan)
- π^{\pm} predictions from W. Vogelsang + CTEQ6M
- \bullet Recorded 11 pb^{-1} at 35% polarization in Run 9 within PHENIX central arm acceptance
- Expect $\approx ~200~e^+$ with $p_T>$ 25 GeV from $pp \rightarrow W^+ \rightarrow e^+ \nu_e$
- Expect $\approx 35 \ e^-$ with $p_T > 25 \ \text{GeV}$ from $pp \rightarrow W^- \rightarrow e^- \bar{\nu}_e$

Analysis Approach

- \bullet Look for $>25~{\rm GeV}$ in EMCal with isolated charged track with high momentum, time of flight cut
- Momentum resolution poor, but good enough to distinguish e^+ from e^- at 2 σ
- Background from charged hadrons with hadronic shower in EMCal significant
- \bullet Other backgrounds : π^0 decay where one+ photon converts, charm/bottom decay, cosmics, accidentals
- Z $\rightarrow e^+e^-$ roughly 6% background for W^+ , 30% for W^-
- After cuts, expect $\delta A_L^{W+} \approx 0.3$

Spin Physics with Ws at RHIC

(From RHIC Spin Plan 2008)

- W^- : $A_L \propto \Delta \bar{u}(x_1) d(x_2) (1 \cos \hat{\theta})^2 \Delta d(x_1) \bar{d}(x_2) (1 + \cos \hat{\theta})^2$
- W^+ : : $A_L \propto \Delta \bar{d}(x_1)u(x_2)(1+\cos\hat{\theta})^2 \Delta u(x_1)\bar{d}(x_2)(1-\cos\hat{\theta})^2$
- For $W^+\text{, }-0.35<\eta_e<0.35\text{, measure combination of }\Delta\bar{d}$ and Δu
- For W^- , $-0.35 < \eta_e < 0.35,$ measure combination of $\Delta \bar{u}$ and Δd
- After cuts, anticipate $\delta A_L^{W+} \approx 0.3$. Eventually, should reach few percent
- Future measurements of $W^- \to \mu^- \bar{\nu}_\mu$ at $1.2 < |\eta_\mu| < 2.4$ separate contributions more cleanly : $\Delta \bar{u}(x_1)/u(x_1)$ at $\eta_\mu << 0$, and $-\Delta d(x_1)/d(x_1)$ at $\eta_\mu >> 0$

Spin Physics with Ws at RHIC

- W candidate event in PHENIX, after many years !
- Many more such events (of order 100), analysis underway
- \bullet Clear evidence for W signal above background
- After cuts, anticipate $\delta A_L^{W+} \approx 0.3$. Eventually, should reach few percent

Summary

- PHENIX and STAR now place tightest constraints on $\Delta g(x)$
- $\Delta g(x)$ small compared to expectations from pol. DIS in measured region (0.05 < x < 0.2)
- \bullet Evidence for $W{\rm s}$ seen in PHENIX central arms, analysis underway for cross-section estimate, asymmetry
- Future upgrades (barrel and forward silicon vertex detectors, RPCs+muon trigger upgrade, calorimetry in forward region) will add greater acceptance, new physics channels
- In addition to $\sqrt{s} = 500$ GeV running in 2009, recorded ≈ 16 pb⁻¹ at 55% polarization at $\sqrt{s} = 200$ GeV : best run so far