Quarkonia Measurements with ALICE

Frederick Kramer

IKF, Goethe-Universität Frankfurt

WWND, Ocho Rios, Jan 8, 2010

Motivation	The Experiment	Performance Studies	Summary
●00000	0000	0000000	0

Outline

Motivation Physics Goals LHC - New Perspectives

The Experiment ALICE Transition Radiation Detector

Performance Studies Direct Quarkonia Secondary ${\rm J}/\psi$

Motivation	The Experiment	Performance Studies	Summary
00000	0000	000000	0

Physics Goals

Quarkonia:

► Bound states of heavy quark pairs, created in early stage of collision

Primary physics goals:

- ► Study elementary production mechanism (p+p)
- ► Probe properties of the QGP (A+A)

Motivation	The Experiment	Performance Studies	Summary
00000	0000	0000000	0

Elementary Reactions

Quarkonia production:

- ► Colour Singlet Model
- ► Colour Octet Model
- Colour Evaporation Model

Elementary Reactions

Motivation

00000

Quarkonia production:

- ► Colour Singlet Model
- Colour Octet Model
- ► Colour Evaporation Model

The Experiment

Contribution from feed-down:

- ► $\chi_c \to J/\psi + \gamma$
- ▶ $B \rightarrow J/\psi + X$ or $\psi' + X$

Measure $\frac{\mathrm{d}^2\sigma}{\mathrm{d}y\mathrm{d}p_{\mathrm{t}}}$ to distinguish between:

- Production models
- ► PDFs

Motivation	The Experiment	Performance Studies	Summary
000000	0000	0000000	0

Heavy Ions

Competing mechanisms:

- 1. Quarkonia production
- Feed down from higher mass quarkonia ↑↑
- 3. QGP induced effects:
 - Melting (Debye screening) $\downarrow \downarrow$
 - Recombination (uncorr. $Q\bar{Q}$) $\uparrow\uparrow$
- 4. Cold nuclear matter effects:
 - Nuclear absorption $\downarrow\downarrow$
 - ▶ Shadowing $\downarrow\downarrow\uparrow\uparrow$

Need to disentangle!

Motivation	The Experiment	Performance Studies	Summary
000000	0000	0000000	0

Necessary Measurements

Measure quarkonia in different systems:

- ▶ **p+p**: elementary processes, baseline for A+A
- ▶ **p+A**: cold medium effects, baseline for A+A
- ► A+A: interaction with hot medium

Motivation ○○○○● The Experiment

Performance Studies

Summary

LHC - New Perspectives

LHC will deliver excellent statistics for quarkonia measurements!

The Experiment

Performance Studies

Summary O

ALICE

 \sim 1000 members from 111 institutes from 31 countries

ITS: Inner Tracking System, TPC: Time Projection Chamber, TRD: Transition Radiation Detector

Performance Studies

Summary

Transition Radiation Detector

- ▶ 7/18 supermodules installed and operational
- ▶ 6 layers of drift chamber + radiator
- Factor 100 in π rejection (p > 3 GeV)

Transition Radiation Detector

Average Pulse Height

Performance Studies

Summary

The TRD as Trigger Detector

- ► L1: trigger on high momentum single electron/electron pair
- ▶ **HLT**: full online data analysis (\rightarrow trigger on e^+e^- inv. mass), event selection and compression

Online display of the vertex positions reconstructed by the ALICE HLT First collisions (p+p, 900 GeV) Nov/Dec 2009 [EPJC, Vol. 65 (2010) pp. 111-125]

Frederick Kramer

Quarkonia Measurements with ALICE

Motivation	The Experiment	Performance Studies	Summary O
$J/\psi \rightarrow \mu^+\mu^-$			

Event display from first collisions!

Frederick Kramer

Quarkonia Measurements with ALICE

Frederick Kramer

Quarkonia Measurements with ALICE

Motivation	The Experiment	Performance Studies	Summary
000000	0000	0000000	0
Secondary J/ψ			

$$\begin{array}{c} \chi_{c_{1,2} \xrightarrow{36.0\%}} J/\psi + \gamma \\ & \downarrow^{\underline{8.3\%}} e^+e^- \text{ (conversion)} \\ \underline{5.94\%} e^+e^- \end{array}$$

Identify in $M(e^+e^-\gamma)$ spectrum

\sim 30% contribution to yield

$$\begin{split} \Delta M &= M(e^+e^-\gamma) - M(e^+e^-) \\ \text{p+p 14 TeV,} \\ 1 \text{ nominal LHC year} \\ &\sim 12,000 \ \chi_c \ \text{(perfect trigger)} \end{split}$$

[EPJC 10.1140/epjc/s10052-009-0895-4]

Motivation
000000

The Experiment

Performance Studies ○○○○○● Summary

Secondary J/ψ

$$B \longrightarrow J/\psi + X$$

$$\downarrow_{5.94\%} e^+e^-$$

 $\mathrm{c}\tau\sim500\mu\mathrm{m}\rightarrow\mathrm{likely}$ to have a displaced vertex

B fraction: Simultaneous fit of inv. mass + pseudo proper decay time (CDF approach)

$$\begin{array}{|c|c|} \hline x = L_{\rm xy} \frac{M_{J/\psi}}{p_{\rm t}} \\ \hline L_{\rm xy} = \vec{L} \frac{\vec{p_{\rm t}}}{|p_{\rm t}|} \text{ and } \vec{L} = r_{\rm vtx}^{\vec{\rm sec}} - r_{\rm vtx}^{\vec{\rm prim}} \end{array}$$

 \sim 20-30% contribution to yield

p+p 14 TeV, 1 nominal LHC year

[J.Phys.G:Nucl.Part.Phys 36 (2009) 064053]

[PRD 71 032001 (2005)]

Motivation	The Experiment	Performance Studies	Summary •
Summary			

- ► LHC provides a very good environment for quarkonia measurements
- ► ALICE will measure quarkonia
 - Dielectron (midrapidity) and dimuon channel (forward)
 - Secondary J/ψ reconstruction
 - Dedicated triggers
 - Acceptance down to $p_t = 0$
- Clear signals are expected
 - in triggered samples
 - in 1st year's min. bias samples for J/ψ (Pb+Pb: also Υ)
- \blacktriangleright Very good mass resolution to separate between $Q\bar{Q}$ states
- \blacktriangleright LHC start end of 2009 very successful, so far 0.36 M p+p events $\sqrt{s}=0.9$ TeV with all detectors