

Recent results from FOPI -From the dynamics of HI collisions to the (Anti-)Kaon-nucleon potential

Yvonne Leifels GSI

Recent results from FOPI From the dynamois of HI/collisions to the (Anti) Kaon-nucleon potential

Dynamics of heavy ion collisions at SIS energies 0.1-2AGeV

Characteristics:

• T<100 MeV, 2-3 ρ₀

In medium

- EOS, $\sigma_{NN,medium}$
- Pauli blocking
- Fermi motion
- Δ lifetime in medium
- Collisional broadening of resonances

Observables:

Collective flow, stopping

Produced particles and fragment yields to extract

T and \rho or **NN interaction in medium**

Kaons in dense huolear/medium

Modified properties of hadrons in dense baryonic matter?

Μ*(ρ)	(mass)
Γ* (ρ)	(width)
σ* (ρ)	(cross section)

$\omega_{\kappa^{\pm}}(\mathbf{p},\mathbf{\rho}) = (\mathbf{n})$	$(n^{*2} + p^2)^{\frac{1}{2}}$	$=U + (m_{\kappa}^{2} + p^{2})^{\frac{1}{2}}$
effect	ive mass	Kaon potential
Pr P ∕ →	oduction: ~ exp (-m* yields	*/ T)
Propagation: F=-∇U → K-flow		
Bound states: B= Σm^* - Σm		
e.(→	g. (ppK ⁻) Search for	∧+X states

In-medium KN potential

FOPI data @ SIS M.L. Benabderramahne et al., *PRL* (2009) $\pi + A \rightarrow K^0 + X$ at 1.15 GeV/c

Anke data @ COSY M. Büscher et al., *EPJ*, A22, 301 (2004) $p + A \rightarrow K^+ + X$ at 2.5 GeV

Model interpretation with HSD: U(K⁰) = + 20 MeV

Model independent interpretation:

 $U_{K} = \frac{p_{s}^{2}}{2m_{K}} = \frac{(140 \,\text{MeV})^{2}}{2 \cdot 498 \,\text{MeV}} = 20 \,\text{MeV}$

Potential depth: $U(K^0) = +20 (+/-5)$ MeV consistent with heavy ion data Accuracy (only) statistics limited, Method applicable to determine isospin dependence of KN – potential (e.g. $\pi^- + \times Sn$)

Kaons in dense matter Spectral function of Anti-Kaons

K⁻N interaction

Resonances ($\Lambda(1405)$) close to the K⁻N threshold Non perturbative problem Chiral SU(3) effective field theories Coupled channels

Conclusion: K⁻N interaction is attractive but strength unclear

The FOR detector

Program: Dynamics of Heavy Ion Collisions Stopping, collective flow, cluster production Ca+Ca → Au+Au 0.1-2.0 AGeV Strangeness production HI collision (AI+AI, Ni+Ni, Ru+Ru, Ni+Pb) Pion induced reactions Droton proton collisions

FOPI-Collaboration

A. Andronic, R. Averbeck, Z. Basrak, N. Bastid, M.L. Benabderramahne, M. Berger, P. Bühler, R. Caplar, M. Cargnelli, M. Ciobanu, P. Crochet, I. Deppner, P. Dupieux, M. Dzelalija, L. Fabbietti, J. Frühauf, F. Fu, P. Gasik, O. Hartmann, N. Herrmann, K.D. Hildenbrand, B. Hong, T.I. Kang, J. Keskemeti, Y.J. Kim, M. Kis, M. Kirejczyk, R. Münzer, P. Koczon, M. Korolija, R. Kotte, A. Lebedev, K.S. Lee, Y. Leifels, P. Loizeau, X. Lopez, M. Marquardt, J. Marton, M. Merschmeyer, M. Petrovici, K. Piasecki, F. Rami, V. Ramillien, A. Reischl, W. Reisdorf, M.S. Ryu, A. Schüttauf, Z. Seres, B. Sikora, K.S. Sim, V. Simion, K. Siwek-Wilczynska, K. Suzuki, Z. Tyminski, J. Weinert, K. Wisniewski, Z. Xiao, H.S. Xu, J.T. Yang, I. Yushmanov, A. Zhilin, Y. Zhang, J. Zmeskal

IPNE Bucharest, Romania CRIP/KFKI Budapest, Hungary LPC Clermont-Ferrand, France GSI Darmstadt, Germany FZ Rossendorf, Germany Univ. of Warsaw, Poland IMP Lanzhou, China TUM, Munich, Germany + P. Kienle (TUM), T.Yamazaki(RIKEN)

ITEP Moscow, Russia Kurchatov Institute Moscow, Russia Korea University, Seoul, Korea IReS Strasbourg, France Univ. of Heidelberg, Germany RBI Zagreb, Croatia SMI Vienna, Austria

FOPI phase 3 (2008-2010) with improved <u>Kaon PID</u>

Yvonne Leifels, WNND 2010

mass(GeV/c²)

Dynamics of heavy ion reactions in the SIS energy range

Au+Au 1A GeV 80 protons transverse b_o<0.15 Δ longitudinal 60 dN/dy₀ 40 £ ∳∆ 20 W. Reisdorf et al. PLB (2004 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 y₀ Stopping observable: $vartI = \frac{\sigma(y_{t0})}{\sigma(y_{t0})}$

- vartl relates transverse and longitudinal expansion
- Stopping decreases with energy and system size
- vartl is sensitive to EOS AND $\sigma_{NN,med}$
- Other observables constrain $\sigma_{NN,med}$

Collective flow

Au + Au 400 AMeV $0.25 < b_0 < 0.45$

If the data is correct and the model is correct \rightarrow soft EOS confirmed **BUT:** Stopping not described accordingly

Data available for Ca+Ca \rightarrow Au+Au 5 particles (p, d, **t**, **^{3}He**, 4 He)

Particle production at SI8 energies

Pions and Deltas

Pions most abundant 20% E_{avail} at highest energies

Kaons

Kaons are produced sub threshold K+: π N, Δ N dominant K-: YN important

Other baryons and mesons

Mesons: K⁰, K^{0*}, Φ Hyperons: Λ , Σ , Σ^*

K⁰ and A measurements in

heavy ion collisions/

M. Merschmeyer et al. (FOPI), PRC 76, 024906 (2007), *nucl-ex/0703036*

Rapidity density distributions

_____T=100 MeV β=0.23

 $P_{det} = P_{prod} \cdot \epsilon \approx 10^{-1} \cdot 10^{-2} = 10^{-3}$

Reconstruction of short lived resonances in fleavy ion collisions

 $P_{det} \approx 10^{-5}$

FOPIs reconstruction method and background construction works for wide resonances. Masses and widths consistent with PDG values.

Rarticle yields at freeze-out

Al+Al 1.9 AGeV 6 independent ratios with 5 strange particles: p, π , K⁰, K*(892), (Λ + Σ), Σ *(1382) and Φ

Fit with model Thermus J. Cleymans et al. (K. Piasecki)

X. Lopez, M. Merschmeyer, P. Gasik

- Rise of inverse slope parameters (T_{eff}) with particle mass \rightarrow radial flow
- Particles' T_{eff} show deviations from flow scenario

 $T_{kin} > 95 \text{ MeV} > T_{chem} = 75 \text{ MeV}$

 Effective way to parametrize yield ratios

Directed Kaon flow and the in-medium XN potentials

- At production same flow for K⁺ and K⁻
- K⁺ opposite to nucleon flow
 - potential
 - rescattering tends to align to nucleons

- K⁻ flow similar to nucleon flow
 absorption
 - strong potential effect

Directed flow of K+ In N+Ni collisions at 1.9 AGeV

$v_1(y)$

• pt integrated kaon flow small

small sensitivity to potentials

$v_1(p_t)$

- strong pt dependence
- sensitive to KN potential
- U = + 20 MeV
- not described by all models

Transverse momentum dependence of directed flow of Kaons

 FOPI remeasured Ni+Ni @ 1.91 AGeV with new TOF barrel
 new data show similar p_t dependence

Directed itow of Anti-Kaons

Ni+Ni 1.93A GeV b < 6 fm

Contracted flow centrality dependence?

peripheral

central

Preliminary

Very strong centrality dependence of directed sideflow of K⁻?

Conclusions

Properties of baryonic matter and dynamics of heavy ion collisions

learned a lot during recent years in high precision, high statistics experiments at GSI/SIS18

and

coherent theoretical effort

pars pro toto: Nantes, Giessen, Frankfurt, Munich, Tübingen, MSU, Catania **But there are still unsolved problems:**

> a consistent description of stopping and directed flow, cluster production kaon flow, role of short lived strange resonances

Need more data on strangeness

Depth of the K⁻N potential important

Deep potential (~ 100MeV) may give rise to exotic states, kaonic clusters (ppK⁻)

Current experimental campaign of FOPI aims on the K⁻N potential

system size dependence of kaon flow search for kaonic clusters in pp collisions Φ production in π induced reactions

Still a lot of interesting physics at SIS18!