Z⁰ Tagged Jets as a Probe of the QGP

Bryon Neufeld In collaboration with Ivan Vitev and Ben-Wei Zhang

Presentation of work done at Los Alamos National Lab

Introduction

Jet Quenching at RHIC – experimentally well established

$$R_{AA}(p_T,\eta) = \frac{1}{\langle N_{coll} \rangle} \cdot \frac{d^2 \sigma^{AA} / d\eta dp_T}{d^2 \sigma^{NN} / d\eta dp_T}$$

Jet quenching as a probe of QGP
^(a) Large leading particle suppression strong evidence for formation of QGP in HIC
^(a) Parton energy loss sensitive probe of medium density, Debye scale, strong coupling, transport coefficients

Limitations of leading particle suppression

- R_{AA} for single particle or I_{AA} for two particle correlations only measure the leading fragments of a jet.
- Jets: a spray of final-state particles moving roughly in the same direction.
- LP R_{AA} can be fit by formalisms with very different assumptions

The future of jet quenching physics-Jet shapes and jet cross sections Explore the fraction of energy lost and variation of R_{AA} with changing cone radius/p_{Tmin}

A theory of jet shapes and cross sections: from hadrons to nuclei, I Vitev, S Wicks, BWZ, JHEP 0811,093 (2008)

Investigated for inclusive jets using GLV energy loss formalism

Initial Geometry

Binary collision density (2D) – corresponds to jet production

Energy loss distribution

$$\frac{\Delta E^{in}}{E}(R^{\max},\omega^{\min}) = \frac{1}{E} \int_{\omega^{\min}}^{E} d\omega \int_{0}^{R^{\max}} dr \frac{dI^{g}}{d\omega dr}(\omega,r)$$

- Energy ratio goes down with larger b.
- Energy ratio becomes smaller with smaller R and larger ω^{\min}

Inclusive Jet cross section @HIC and R_{AA}

$$\frac{\sigma^{AA}(R,\omega^{\min})}{d^{2}E_{T}dy} = \int_{\epsilon=0}^{1} d\epsilon \sum_{q,g} P_{q,g}(\epsilon) \frac{1}{(1-(1-f_{q,g})\cdot\epsilon)^{2}} \frac{\sigma_{q,g}^{NN}(R,\omega^{\min})}{d^{2}E_{T}'dy}$$

$$E_{T}' = E_{T}/(1-(1-f_{q,g})\cdot\epsilon)$$
Define nuclear modification factor for jet cross section:

$$R_{AA}^{jet}(E_{T}; R^{\max}, \omega^{\min}) = \frac{\frac{d\sigma^{AA}(E_{T}; R^{\max}, \omega^{\min})}{dyd^{2}E_{T}}}{(N_{bin})\frac{d\sigma^{pp}(E_{T}; R^{\max}, \omega^{\min})}{dyd^{2}E_{T}}}$$
Centrality dependence of R_{AA} for jet cross section is similar to that for single hadron production

R_{AA} vs R^{max} and ω^{min}

- R_{AA} for jet cross section evolves continuously by varying cone size and acceptance cut.
- Contrast: single result for leading particle
- Limits: R_{AA} approaches to single hadron suppression with R^{max} and large ω^{min}

Tagging with Z⁰ boson

Tagged Jets

Figure 1: Diagrams contributing to Z^0 + gluon jet production.

Consider both Z⁰+jet and γ*+jet (small correction)
 Z⁰+jet has small yield, but is excellent handle for jet energy loss

From Z⁰ to dileptons

 Experimentally, dileptons are observed. We perform the decay by a Lorentz boost weighted with branching ratio.

Comparison to Data

• Z⁰+jet measurements recently became available

As expected within 30% - 50% of the data. Shape is reasonably well described, NLO in progress

At LO, quenched cross section takes simple form, probes P(ε), f

$$\frac{d\sigma}{dy_3 \, dy_4 \, dp_T^3 \, dp_T^4 \, q} = P(\frac{1 - \frac{p_{TQ}^4}{p_T^4}}{1 - f})_{q,g} \frac{|M|^2 \, \delta(x_1 - \bar{x}_1) \delta(x_2 - \bar{x}_2)}{(2\pi)^2 \, 4 \, x_1 \, x_2 \, S^2 \, (1 - f)}$$

$$\varepsilon = \sum_{i=1}^{n} \frac{\omega_{i}}{E}, \quad P(\varepsilon) = \sum_{0}^{\infty} P_{n}(\varepsilon) \quad P_{0}(\varepsilon) = e^{-\langle N_{g} \rangle} \delta(\varepsilon)$$

$$P_{1}(\varepsilon) = \frac{dN}{d\varepsilon}(\varepsilon), \quad P_{n}(\varepsilon) = \frac{1}{n} \int_{0}^{\varepsilon} d\varepsilon' \quad P_{n-1}(\varepsilon - \varepsilon') \frac{dN}{d\varepsilon}(\varepsilon')$$

$$\int_{0}^{1} d\varepsilon' \quad P(\varepsilon') = 1, \quad \int_{0}^{1} d\varepsilon' \quad \varepsilon' P(\varepsilon') = \left\langle \frac{\Delta E}{E} \right\rangle$$
GLV. BDMPS (ASW)

Example of probability density

Obtaining the number of radiated gluons

Constrain $p_{T3} = p_{T4}$

 $\langle N^{g} \rangle = -\ln (R_{AA})$

The form of the quenched cross section

Summary

- Jet quenching is well established experimentally, however, leading particle suppression by itself provides incomplete information
- Jet shapes and jet cross sections may be able to distinguish between energy loss formalisms, determine fundamental properties of QGP
- The theory of jet shapes and jet cross sections in nuclear collisions has been developed by VWZ, and applied to inclusive jets at LHC
- Work now shifting to tagged jets, here presented preliminary results on Z⁰ tagged jets at LHC energies

Backup

What to use for the source term?

A common choice:

$$J^
u(x) = {dE\over dt} \left(1,ec u
ight) \,\delta(ec x - ec ut) \,\,?$$

- Conserves energy and momentum globally (simply integrate the equation of motion over all space)
- Neglects local excitations, terms which integrate to zero globally

The linearized hydro equations couple to the source term, in turn yielding the particle emission spectrum

$$\delta\epsilon(ec k,\omega) = rac{ikJ_L(ec k,\omega) + J^0(ec k,\omega)(i\omega - \Gamma_s k^2)}{\omega^2 - c_s^2 k^2 + i\Gamma_s \omega k^2}
onumber \ ec g_L(ec k,\omega) = rac{i\omega\hat{k}J_L(ec k,\omega) + ic_s^2ec kJ^0(ec k,\omega)}{\omega^2 - c_s^2 k^2 + i\Gamma_s \omega k^2}
onumber \ ec g_T(ec k,\omega) = rac{iec J_T(ec k,\omega)}{\omega + rac{3}{4}i\Gamma_s k^2}
onumber \ ec w$$