Year-1 (Heavy-Ion) Physics with CMS at the LHC

Edwin Norbeck and Yasar Onel
(for the CMS collaboration)
University of Iowa

For the 26th Winter Workshop on Nuclear Dynamics
Ocho Rios, Jamaica 8 January 2010
Outline

- LHC (Large Hadron Collider)
- CMS (Mostly about forward angles)
- December results and future projections
What is New at LHC?

<table>
<thead>
<tr>
<th></th>
<th>AGS</th>
<th>SPS</th>
<th>RHIC</th>
<th>LHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{s_{NN}}$ (GeV)</td>
<td>5</td>
<td>20</td>
<td>200</td>
<td>5500</td>
</tr>
<tr>
<td>Increasing factor</td>
<td>x4</td>
<td>x10</td>
<td></td>
<td>x28</td>
</tr>
<tr>
<td>η range</td>
<td>±1.6</td>
<td>±3.0</td>
<td>±5.3</td>
<td>±8.6</td>
</tr>
</tbody>
</table>

- LHC energies are far exceeding previous heavy-ion accelerators
 - A hotter, denser, and longer lived partonic matter

For central collisions, \(\varepsilon_{Bjorken} \approx \frac{1}{\tau_0 (\pi R^2)} \frac{dE_T}{d\eta} \geq 10 \text{ GeV/fm}^3 \)

with \(\tau_0 \lesssim 1 \text{ fm/c} \)
Production Rate at LHC

- Large rates of various hard probes over a larger kinematic range
- Plenty of heavy quarks (b & c)
- Weakly interacting probes are available (W^\pm & Z^0)
The Quark Gluon Plasma

Hard probes are abundant at the LHC. Allow quantitative measurements of, e.g., temperature, density, transport coefficients of the QGP.
Key Parameters of “Early” Pb Ion Beam
(from LHC Design Report)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Early Beam</th>
<th>Nominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy per nucleon</td>
<td>TeV</td>
<td>2.76</td>
<td>2.76</td>
</tr>
<tr>
<td>Initial ion-ion Luminosity L_0</td>
<td>cm$^{-2}$s$^{-1}$</td>
<td>$\sim 5 \times 10^{25}$</td>
<td>1×10^{27}</td>
</tr>
<tr>
<td>No. bunches, k_0</td>
<td></td>
<td>62</td>
<td>592</td>
</tr>
<tr>
<td>Minimum bunch spacing</td>
<td>ns</td>
<td>1350</td>
<td>99.8</td>
</tr>
<tr>
<td>β^*</td>
<td>m</td>
<td>1.0</td>
<td>0.5 /0.55</td>
</tr>
<tr>
<td>Number of Pb ions/bunch</td>
<td></td>
<td>7×10^7</td>
<td>7×10^7</td>
</tr>
<tr>
<td>Transv. norm. RMS emittance</td>
<td>μm</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Longitudinal emittance</td>
<td>eV s/charge</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Luminosity half-life (1,2,3 expts.)</td>
<td>h</td>
<td>14, 7.5, 5.5</td>
<td>8, 4.5, 3</td>
</tr>
</tbody>
</table>

Note from Chamonix meeting: Early Pb Beam will have lower energy. 10TeV pp corresponds to 4 TeV in Pb+Pb (1.97 TeV/nucleon)

At full energy, luminosity lifetime is determined mainly by collisions (“burn-off” from ultraperipheral electromagnetic interactions) $\sigma \approx 520$ barn

Goal for 2-3 years (?) beyond

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year-1</td>
<td>~ 4 TeV</td>
<td>~150Hz</td>
<td>~100Hz</td>
<td>~60s</td>
</tr>
<tr>
<td>Nominal</td>
<td>5.5 TeV</td>
<td>~8kHz</td>
<td>~3kHz</td>
<td>~2s</td>
</tr>
</tbody>
</table>

During Year-1 run no selection will be applied in the HLT and all events will be written to tape
The three LHC heavy-ion experiments

- **ALICE**: dedicated HI experiment
 - Largest HI community (~1000)
 - Tracking ($|\eta|<1-2$): TPC + ITS + TRD
 - 0.5 T solenoid magnet
 - EMCal under discussion
 - Forward muon spectrometer

- **ATLAS & CMS**: multipurpose (pp) + HI program
 - People: ~50/2000 (ATLAS), ~70/2300 (CMS)
 - $|\eta|<2.5$: Full tracking, muons
 - $|\eta|<5$: Calorimetry
 - 4 T (CMS), 2 T (ATLAS) mag. field

- **Forward detectors** (CMS)
 - Strongest capabilities: hard-probes, Y, full jet reco, heavy-Q jet PID, jet-Z,γ

26WW Ocho Rios

Ed Norbeck Univ. of Iowa 8 Jan 2010

7
Large Hadron Collider (LHC) @ CERN

1 ring: 26.66 km circumference
8.33 T superconducting coils
25 ns crossing time
Large Range of Hermetic Coverage:

- **Tracker, muons**: $|\eta| < 2.4$
- **Forward HCAL**: $3 < |\eta| < 5$
- **ECAL + HCAL**: $|\eta| < 3$
- **ZDC**: $8.3 < |\eta|$

SUPERCONDUCTING COILS

ECAL
PbWO$_4$ Crystals

HCAL
Cu-Scintillator Sampling

IRON YOKE

TRIGGERER
Si Pixels & Strips
$\Delta p/p = 1-2\%$
Occupancy < 2\% (Pixel) for central Pb+Pb

MUON BARREL
Drift Tubes & RPCs
$\sigma_m = 50$ MeV at 10 GeV/c2

MUON ENDCAPS
Cathode Strip Chambers & Resistive Plate Chambers (RPCs)

Forward Detectors

- **CASTOR**
 $(5.2 \leq \eta \leq 6.5)$

- **TOTEM**
 $(5.3 \leq \eta \leq 6.7)$

- **ZDC**
 $(z = \pm 140$ m$)$
Innermost Endcap Disk
Compact Muon Solenoid

Détection des particules $|\eta|<2.4$

EMCal: cristaux PbWO$_4$ $|\eta|<3$

Silicium: pixels (3) and strips (10) $|\eta|<2.4$

HCal: Scintillateur $|\eta|<5$

Muon: drift tubes + RPC $|\eta|<2.4$

+ Extensions à grand angle
Some of CMS capabilities

• CMS excels at high p_T measurements in Pb+Pb
 – Fast, flexible DAQ + Trigger
 • Jet, photon, muon trigger
 – High resolution, large acceptance calorimeters
 • Jets, photons
 – High resolution, large acceptance tracker
 • Charged hadrons from 100 MeV to 100’s of GeV

• The excellent capabilities CMS give the unique possibility of measuring both soft and hard probes of the dense medium state:
 – Multiplicity
 – Soft and hard spectra of charged particles
 – Fragmentation Function from γ– Jet correlations
 – Photons
 – Jets
 – Quarkonia
Excellent resolution for upsilon states

I expect the second excited state to melt in the hot QGP. If so, the third peak would be only from excited upsilons formed at the surface. Study details by looking at the amplitude of the third peak as a function of centrality and angle wrt the reaction plane and of other variables.
Tungsten stops beam. Kinetic energy of n, γ produces showers of charged particles, which make Čerenkov light in fibers.

EM has 5 horizontal towers

HAD section has 4 longitudinal towers
Measuring Reaction Centrality

- ZDC measures spectator neutrons
Other measures of impact parameter

In forward calorimeter HF

\[3 < \eta < 5.2 \]

In CASTOR

\[5.2 < \eta < 6.7 \]
New, useful physics from p-p collisions in December

dN_{ch}/d\eta at 2.36 TeV Allows for better extrapolation to energies used in heavy-ion calculations.

Expect to get dN_{ch}/d\eta at 7 TeV (3.5 TeV beams) in February. This will bracket 4 and 5.5 TeV/nucleon heavy ion runs.

>10 \mu b^{-1} at 900 GeV (injection energy) gave dN_{ch}/d\eta values that agree with other measurements (Tevatron).

CMS is working well. Measurements agree with MC.
The present plan

Resume proton experiments in mid February at 7 TeV. Some increase in energy during the year.

Pb beam setup during last two weeks of October. Pb-Pb experiments during November at some energy well under 5.5 TeV/nucleon, 4 TeV/nucleon likely.
Search for Stranglets

Edwin Norbeck and Yasar Onel
University of Iowa

(not submitted to the 3000 people in the CMS collaboration)

For the 26th Winter Workshop on Nuclear Dynamics
Ocho Rios, Jamaica 8 January 2010
Stranglets
Norbeck’s observations

• Defined here as light nuclei with enough strange quarks to reduce Z/A below that of lead.
• Thought to be a common object seen in the core of cosmic ray showers (in mountain top detectors).
• Typical reaction: cosmic iron on nitrogen.
• How could such a reaction produce a stranglet?
Cosmic ray stranglets

• Cannot be formed from hot quark-gluon plasma. Nucleons (P, N, Λ_0) from hot QGP do not stick together to form nuclei.
• Suggest formed by Ks, etc. from QGP getting into the spectators.
• For Fe on N there is always much spectator matter.
• Would like to make them with Pb-Pb and see them in the Zero Degree Calorimeter.
Lifetimes

- Lifetimes of hyper nuclei with two Λ_o is similar to that of a single Λ_o, 200-300 ps.
- Assuming the lifetime of a strange quark in a strangelet is 300 ps, the mean distance to decay, $\gamma c \tau$, is:
 - 9.6 m at 100 GeV/nucleon (RHIC)
 - 260 m at 2.75 TeV/nucleon (LHC)
 - 96 km at 1000 TeV/nucleon (cosmic rays)
- With many strange quarks, the lifetime of the stranglet may be shorter.
- Look for stranglets in a zero degree calorimeter. Distance from IP to ZDC is 18 m for STAR and 140 m for CMS.
- For CMS, 84 m gets stranglet beyond last magnet.
STAR stranglet search

• Looked at 4% most central collisions and found none [Phys. Rev. C 76 (2007) 011901(R)]
• “Good” place to look because fewest background neutrons.
• But stranglets would only be produced in peripheral collisions.
CMS stranglet search

- Look for large signal in hadronic part of ZDC.
- Determine impact parameter from HF (3 < η < 5).
- Look for signals larger than for expected number of neutrons.
- STAR already has such data. Can we search STAR data for strangelet events?
Energy dependence
RHIC vs LHC

• LHC energy more like cosmic rays
• More Ks at the higher energy

Mechanism

K^- more likely to react with spectator than K^+
Conclusions about “stranglets”

• Spectator nuclei with reduced Z/A likely produced in suitably non-central collisions, particularly at LHC.

• Need some good quantitative calculations.

• Short lived stranglets that could reach mountain-top cosmic ray detectors may not live long enough to reach ZDCs.