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Conclusion: at y=0 there are no “cold 
nuclear matter” effects that produce 
suppression in inclusive q and G production. 

BUT: This is true only if there is a 
factorization between the nuclei!

Introduction I 
Inclusive light hadron and open charm production at √s=200 GeV
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Fig. 1. The discovery in
√

sNN = 130 GeV/c Au+Au collisions at RHIC of strong elliptic flow (left, [13])
and of jet quenching (right, [14]). Left: The flow strength parameter v2 versus transverse momentum pT

for charged particles produced at mid-rapidity in minimum bias collisions. Right: The suppression factor
RAA versus pT for π0’s (circles) and charged particles (squares) in central collisions, compared to lower
energy results.

where the denominator consists of the p+p yield scaled, as per perturbative QCD (pQCD)
by the equivalent parton+parton flux from a Au+Au collision, the suppression was found
to be as large as a factor of 5 in the most central events at

√
sNN = 200 GeV[15,16]. In a

curious inversion, the realization[17] that detailed information on the opacity and other
properties of a dense thermal QCD system could be obtained using the very deviations
from pQCD expectations absent interactions in a produced medium spurred development
and application of a sophisticated technology[18,19,20,21,22,23] making possible “tomo-
graphic” studies of the produced matter. The observed quenching was consistent with
parton energy loss rates ∼ 15 times higher than in cold nuclear matter[27], and demanded
an initial matter density of order 100 times that of normal nuclear matter[24,25,26]. A
striking observation in support of these estimates was the disappearance of the “away-
side” jet partner in Au+Au collisions[29] (Figure 2), indicating that the matter density
was essentially opaque to high-pT partons and that the observed high transverse momen-
tum “trigger” particles were dominated by surface emission.

Three other early key developments can only be briefly mentioned here:
– The interpretation of the jet-quenching results was bolstered by reliance on in situ

measurement of baseline (p+p) and control (d+Au) data. Comparison of the p+p data
to theoretical calculations established the quantitative reliability of pQCD calculations
at RHIC energies[30]. The demonstration that suppression effects were absent in d+Au
collisions[31,32,33,34] provided crucial evidence that the quenching observed in Au+Au
collisions was due to parton propagation in a dense thermal environment, rather than
to modifications of the nuclear wave function.
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Theoretical support: an approximate kT - factorization 
holds in G and light q production.

One can trace the origin of the 
(approximate) factorization in that 
there is no restriction on the 
quantum numbers of the product 
(Spin, Color etc.)  
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FIG. 5: Gluon production in pA collisions as seen in the transverse plane. To make the picture
easier to read the gluon is placed far away from the proton which is highly unlikely to happen in
real life.

Let us denote the forward scattering amplitude of a gluon dipole of transverse size r on a
single nucleon (proton) integrated over the impact parameter b′ of the dipole measured with
respect to the proton by

∫
d2b′ nG(r, b′, y = 0) = π α2

s r2 ln
1

rT Λ
. (41)

Eq. (41) is obtained by expanding Eq. (9) at the leading order and taking A = 1. It
corresponds to the two gluon exchange interaction between the dipole and the proton. In
the quasi-classical Glauber-Mueller approximation in which Eq. (9) is derived each nucleon
exchanges only two gluons with the dipole [13, 46]. Therefore Eq. (41) is a natural reduction
of Eq. (9) to a single nucleon case.

With the help of Eq. (41) we rewrite Eq. (40) as [42]

dσpA

d2k dy
=

CF

αs π (2π)3

1

k2

∫
d2B d2b d2z∇2

z nG(z, b−B, 0) e−ik·z∇2
z NG(z, b, 0). (42)

Now B is the impact parameter of the proton with respect to the center of the nucleus
and b is the impact parameter of the gluon with respect to the center of the nucleus as
shown in Fig. 5. Eq. (42) is the expression for gluon production one would write in the
kT -factorization approach [43]. To see this explicitly let us rewrite Eq. (42) in terms of the
unintegrated gluon distribution function from Eq. (2). One easily derives

dσpA

d2k dy
=

2 αs

CF

1

k2

∫
d2q φp(q) φA(k − q), (43)

which is the same formula as obtained in kT -factorization approach [9, 43, 50]. φp is defined
as unintegrated gluon distribution of the proton given by Eq. (2) with nG instead of NG on
the right hand side. Eq. (43) demonstrates that the gluon production cross section in pA
can be expressed in terms of the gluon distribution (2) in a rather straightforward way [42].
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Somehow it is the distribution (2) and not the Weizsäcker-Williams distribution (6) that
enters Eq. (43).

Eq. (43) demonstrates that, at least in the framework of McLerran-Venugopalan model,
the multiple rescattering leading to Cronin enhancement in pA can be incorporated in the
gluon distribution functions [29, 33]. There is no clear distinction between the nuclear wave
function effects and the Glauber-type rescatterings in the nucleus. Anti-shadowing present
in the gluon distribution function φA(k) as shown in Fig. 3 simply translates into Cronin
effect of Fig. 4 via Eq. (43).

In the quasi-classical approximation of McLerran-Venugopalan model one can prove a
sum rule for the gluon production cross section in pA similar to the sum rule we proved for
gluon distributions in Sect. IIB. To prove the sum rule we note that Eq. (42) implies that

∫
d2k k2 dσpA

d2k dy
=

CF

αs 2π2

∫
d2B d2b

[
∇2

z nG(z, b−B, 0)
] ∣∣∣∣

z=0

[
∇2

z NG(z, b, 0)
] ∣∣∣∣

z=0

. (44)

For Glauber-Mueller NG from Eq. (9) and for nG from Eq. (41) the following condition is
satisfied

lim
zT→0

{[
∇2

z nG(z, b−B, 0)
] [
∇2

z NG(z, b, 0)
]
− A1/3

[
∇2

z nG(z, b−B, 0)
] [
∇2

z nG(z, b, 0)
]}

= 0.(45)

The impact parameter integration in pA will give an extra factor of A2/3 as compared to
pp. Together with Eq. (45) this gives

∫
d2k k2 dσpA

MV

d2k dy
= A

∫
d2k k2 dσpp

MV

d2k dy
(46)

in the quasi-classical approximation.
Similar to the sum rule proved in Sect. II for gluon distribution functions, the sum rule

(46) insures that if the quasi-classical gluon production cross section in pA collisions is, in
some region of kT , smaller than A times the gluon production cross section in pp than there
should be some other region of kT in which their roles are reversed. For RpA defined in
Eq. (32) that means that if, in some region of kT , it is less than 1 there must be some other
region of kT in which it is greater than 1. Of course the k2 factors in Eq. (46) make the
quantitative amounts of suppression and enhancement very different from the ones dictated
by, for instance, the sum rule of Sect. II.

In the quasi-classical approximation for the gluon production in pA considered above RpA

is below 1 at kT <∼Qs0. Expanding Eq. (34) for kT $ Qs0 we write

RpA(k) ≈ k2

Q2
s0

$ 1 if kT $ Qs0. (47)

Eq. (47), together with the sum rule (46) imply that there must exist a region of kT with
a Cronin-like enhancement of gluon production, which is demonstrated by the full answer
plotted in Fig. 4.

IV. INCLUDING SMALL-x EVOLUTION: SUPPRESSION AT ALL pT

A. Including Small-x Evolution

As the energy of the collisions increases quantum evolution corrections become important.
For produced particles with the same kT higher energy implies smaller effective Bjorken x

Kovchegov, KT, 2001

proton

nucleus
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Production of the q-anti-q pair: pA

kT-factorization is broken down

Fujii, Gelis, 
Venugopalan 



Conclusion: at y=0 the “cold nuclear matter” effects are insufficient to  
produce the observed suppression in J/ψ inclusive production WRONG!

Because factorization is badly broken in J/ψ production 
in pA and AA collisions 
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Introduction II 
Inclusive J/ψ production at √s=200 GeV
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k
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p
−

lc =
1

Mx
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1

k
−

+ (q − k)
−
− q

−

≈

1

k
−

1) lc>>RA coherent scattering: all nucleons participate in scattering 
simultaneously.

2) lc<<RA incoherent scattering: every nucleon acts as independent 
scattering center.

What breaks factorization? Coherence.



8

QED analogy: coherent vs Raman (combinational) light scattering

Landau-Lifshitz, II §80: “Scattering of waves with large frequencies”

Coherence in E&M

q~1/λ

If λ>>R ⇒ qr<<1 ⇒ Exp(i q r)=1 All scattering centers equally contribute 1. 

If λ<<R ⇒ qr>>1 ⇒ Exp[i q (ra-rb)]=1 when ra=rb , otherwise 0; i.e.  different 

scattering centers are independent. 

Coherent scattering:

Incoherent scattering:
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Glauber-Gribov model

α
2

sA
1/3

∼ 1

Glauber: assume projectile-nucleon amplitudes are not correlated.

QCD: if

Gribov: hadrons do not diagonalize the scattering matrix => diffraction

Scattering matrix S is diagonal in the transverse coordinate space. 

UR particle travels along the straight lines in external field ⇒

Tactics: write the scattering amplitude in terms of transverse 
coordinates of all excitations ⇒ `dipole model’. 

Quasi-classical approximation
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Beyond Factorization

σqq̄A
tot (s; r) = 2

∫

d2b NA(r,b, Y ) = 2

∫

d2b
(

1 − e−
1

2
σqq̄N
tot

(s;r) ρ TA(b)
)

σqq̄N
tot (s; r) =

αs

Nc

π2
r
2 xG(x, 1/r2)In the Born approximation:

Glauber-Mueller 
formula

B ba

r

Write the scattering amplitude in terms of transverse 
coordinates of all excitations ⇒ `dipole model’. 

Relevant variables: transverse coordinates 
of charges. E.g. for q and anti-q: x and y 
or r=x-y and B=(x+y)/2
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Production of the q-anti-q pair: pA

Heavy quark approximation (valence quark doesn’t interact):

This equation accounts only for the inelastic interaction and the physical meaning of (2.12) is the cross section of
all possible inelastic interaction in which the cc̄ pair is produced. We need to add the cross section for the elastic
production of the quark-antiquark pair, which reads

dσel(pA)
dY d2k d2b

= x1G(x1,m
2
c)

∫
d2 r e−i 1

2 k·r
∫

d2 r′ ei 1
2 k·r′

ΦG(l1, r, r′, z = 1/2)

×
{
1− exp[−σ(x2, r

2) ρ 2RA]
}
·

{
1− exp[−σ(x2, r

′2) ρ 2RA]
}

. (2.13)

The sum of (2.12) and (2.13) gives

dσtot(pA)
dY d2k d2b

= x1G(x1,m
2
c)

∫
d2 r e−i 1

2 k·r
∫

d2 r′ ei 1
2 k·r′

ΦG(l1, r, r′, z = 1/2)

×
{
1− exp[−σ(x2, r

2) ρ 2 RA]− exp[−σ(x2, r
′2) ρ 2 RA] + exp[−σ(x2, (#r − #r′)2) ρ 2RA]

}
. (2.14)

Introducing the quark saturation scale Q2
s (see (A.13) and (A.14)) we can write

σ(x, r2) ρ 2RA =
1
4

r2 Q2
s,A(x) . (2.15)

The form of Q2
s is determined by the phenomenology of low x DIS [45, 46, 47, 48, 50] and forward hadron production

in p(d)A collisions [49, 51, 52, 53]. Introducing a new dimensionless variable ζ = mc r we can rewrite (2.14) as

dσtot(pA)
dY d2k d2b

=
1

(2π)3
αs

m2
cπ

x1G(x1,m
2
c)

∫
d2ζ d2ζ ′ eik·(ζ−ζ′)/(2mc)

×
[

1
2

ζ · ζ ′

ζ ζ ′
K1(ζ )K1(ζ ′) + K0(ζ) K0(ζ ′)

]

×
{
1− exp

(
−ζ2 Q2

s/4m2
c

)
− exp

(
−ζ ′2 Q2

s/4m2
c

)
+ exp

[
−(ζ − ζ ′)2 Q2

s/4m2
c

]}
. (2.16)

It was pointed out in Ref. [2] that the dominant contribution to the integrals on the r.h.s. of (2.16) is originating
from the integration region r′ # r # 1/mc, i.e. ζ ′ # ζ ≤ 1 (or, equivalently, ζ # ζ ′ ≤ 1). In this kinematic region
(2.16) reduces to the following expression

dσtot(pA)
dY d2k d2b

=
1
4π

αs

m2
cπ

x1G(x1,m
2
c)

×
∫ ∞

0
dζ2 K0(ζ) J0(kζ/2mc)

∫ ζ2

0
dζ ′2 K0(ζ ′)

{
1− exp[−ζ ′2 Q2

s(x2)/4m2
c ]

}
(2.17)

In the saturation region Qs % mc the dipole scattering amplitude reaches its unitarity limit 1−e−ζ′2 Q2
s(x2)/4m2

c ≈ 1.
Therefore, the rapidity distribution becomes

dσtot(pA)
dY d2k d2b

∝ x1G(x1,m
2
c) ∼ exp (−λ Y ) , (2.18)

while for the same process in hadron-hadron collisions we have (see (2.1))

dσtot(pp)
dY d2k d2b

∝ x1G(x1,m
2
c) x2G(x2,m

2
c) ∼ constant(Y ) , (2.19)

where we assumed that xG(x,m2
c) ∝ 1/xλ at low x (which is true if Y is not too close to the proton fragmentation

region). It is clear that there is a substantial difference between the rapidity distribution in these two cases.

– 6 –

KT, 2004

where
σ̂in(x2, r, r

′) ≡ σ(x2, r
2) + σ(x2, r

′2) − σ(x2, (r − r′)2) . (2.6)

(The σ̂ notation is used to distinguish the dipole cross section defined in (2.6) from the inclusive heavy quark-
antiquark inelastic cross section we discuss later, see (2.12)). In derivation of (2.5) we took into account only the
DGLAP contribution to x1G

(
x1,m2

c

)
and we treated the c-quark as a non-relativistic particle with z = 1/2. All

these simplifications are not important for our main results but allow for a more compact notations.
The gluon light-cone wave function is well-known (Refs. [33, 34, 35]). It has the simplest form for z = 1/2 and

l21/4 # m2
c , namely (see (A.26))

ΨG(mc, r, z = 1/2) =
g ta

2π

[
i
r · ελ

r
mc K1(rmc) λ δs,s′ + K0(rmc) smc(1 + sλ)δs,−s′

]
; (2.7)

ΦG(mc, r, r
′, z = 1/2) =

1
(2π)3

1
2(N2

c − 1)

∑

λ,s,s′

ΨG(mc, r, z = 1/2)Ψ∗
G(mc, r

′, z = 1/2)

=
1

(2π)3
αsm2

c

π

[
1
2

r · r′

rr′
K1 (rmc) K1 (r′mc) + K0 (rmc) K0 (r′mc)

]
, (2.8)

where ta is the Gell-Mann matrix and ελ is the polarization vector. With these definition we can write (2.5) as

dσ(pp)
dY d2k

= x1G(x1,m
2
c)

∫
d2r

∫
d2r′ ΦG(mc, r, r

′, z = 1/2) ei 1
2 (r′−r)·k σ̂in(x2, r, r

′) (2.9)

In Appendix we give a detailed derivation of these formulas.

2.2 Hadron–heavy nucleus collisions

Production of quark-antiquark pairs in high energy proton-nucleus collisions and in DIS both in the quasi-classical
approximation of McLerran-Venugopalan model [12] (summing powers of α2

sA
1/3) and including quantum small-x

evolution (summing powers of αs ln 1
x ) has been calculated in Ref. [36, 37]. This process has been also considered

by other authors [38, 39, 40] who obtained similar, though less general, results. Phenomenological applications have
been addressed in details in [41, 42]. Using the results of [36, 37, 42] it is not difficult to generalize the formulae of
the previous subsection for the case of pA collisions. The details are given in Appendix. Here we present a derivation
that emphasizes the key physical issues.

As one can see in Fig. 2 the quark-antiquark pair production in hadron-nucleus interaction includes an additional
elastic scattering of dipoles with sizes r and r′ as well as inelastic interaction at points zi, which are the longitudinal
coordinates of nucleons in the nucleus 1. To include both processes we need to modify (2.1) in the following way

dσin(pA)
dY d2k d2b

= x1G(x1,m
2
c)

∫
d2r

∫
d2r′ ΦG(mc, r, r

′, z = 1/2) ei 1
2 (r′−r)·k

×
∫ 2RA

0
ρ σ̂in(x2, r, r

′) dz0 e−[σ(x2,r2)+σ(x2,r′2)] ρ 2 RA

×
∞∑

n=0

∫ 2RA

z0

d z1 . . .

∫ 2RA

zn−2

dzn−1

∫ 2RA

zn−1

dzn ρn σ̂n
in(x2, r, r

′) (2.10)

where ρ is the density of the nucleons in a nucleus and RA is the nucleus radius. For brevity we wrote (2.10) for a
cylindrical nucleus. In Sec. 5 we perform numerical analyses with realistic nuclear density distributions.

1Note that z (z′) appearing in (2.7), (2.8) etc. denote the fraction of the gluon’s light-cone momentum carried by the c-quark in the
(complex conjugated) amplitude. zi’s with i = 0, 1, 2, . . . in Fig. 2 etc. denote the longitudinal coordinates of nucleons in the nucleus.
These are two completely unrelated variables.

– 4 –
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(2π)3
αsm2

c

π

[
1
2

r · r′

rr′
K1 (rmc) K1 (r′mc) + K0 (rmc) K0 (r′mc)

]
, (2.8)

where ta is the Gell-Mann matrix and ελ is the polarization vector. With these definition we can write (2.5) as

dσ(pp)
dY d2k

= x1G(x1,m
2
c)

∫
d2r

∫
d2r′ ΦG(mc, r, r

′, z = 1/2) ei 1
2 (r′−r)·k σ̂in(x2, r, r

′) (2.9)

In Appendix we give a detailed derivation of these formulas.

2.2 Hadron–heavy nucleus collisions

Production of quark-antiquark pairs in high energy proton-nucleus collisions and in DIS both in the quasi-classical
approximation of McLerran-Venugopalan model [12] (summing powers of α2

sA
1/3) and including quantum small-x

evolution (summing powers of αs ln 1
x ) has been calculated in Ref. [36, 37]. This process has been also considered

by other authors [38, 39, 40] who obtained similar, though less general, results. Phenomenological applications have
been addressed in details in [41, 42]. Using the results of [36, 37, 42] it is not difficult to generalize the formulae of
the previous subsection for the case of pA collisions. The details are given in Appendix. Here we present a derivation
that emphasizes the key physical issues.

As one can see in Fig. 2 the quark-antiquark pair production in hadron-nucleus interaction includes an additional
elastic scattering of dipoles with sizes r and r′ as well as inelastic interaction at points zi, which are the longitudinal
coordinates of nucleons in the nucleus 1. To include both processes we need to modify (2.1) in the following way

dσin(pA)
dY d2k d2b

= x1G(x1,m
2
c)

∫
d2r

∫
d2r′ ΦG(mc, r, r

′, z = 1/2) ei 1
2 (r′−r)·k

×
∫ 2RA

0
ρ σ̂in(x2, r, r

′) dz0 e−[σ(x2,r2)+σ(x2,r′2)] ρ 2 RA

×
∞∑

n=0

∫ 2RA

z0

d z1 . . .

∫ 2RA

zn−2

dzn−1

∫ 2RA

zn−1

dzn ρn σ̂n
in(x2, r, r

′) (2.10)

where ρ is the density of the nucleons in a nucleus and RA is the nucleus radius. For brevity we wrote (2.10) for a
cylindrical nucleus. In Sec. 5 we perform numerical analyses with realistic nuclear density distributions.

1Note that z (z′) appearing in (2.7), (2.8) etc. denote the fraction of the gluon’s light-cone momentum carried by the c-quark in the
(complex conjugated) amplitude. zi’s with i = 0, 1, 2, . . . in Fig. 2 etc. denote the longitudinal coordinates of nucleons in the nucleus.
These are two completely unrelated variables.
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Inelastic processes:

Production of the q-anti-q pair



Production of J/ψ: pp vs pA

!l1, x1
!l1, x1
!l1, x1

A) B)

hadron − hadron collisions

ΨV (r) ΨG(l1; r, z)ΨV (r) ΨV (r)

!l2, x2 !l2, x2 l3, x2

ΨG(l1; r, z)

z01 z02

hadron − nucleus collisions

α
4

sA
2/3 = (α2

sA
1/3)2

∼ 1α
3

sA
1/3 = αs(α

2

sA
1/3) ∼ αs

This mechanism is dominant only for central enough collisions

ΨG(mc, r, z) ⊗ ΨV (r, z) =

√

3 ΓJ/Ψ→e+e− MJ/Ψ

48 π αem

m3
c r2

4
K2 (mc r)
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Production of J/ψ: relevant time scales

A pre-hadron cc pair is produced over time

 J/ψ wave function is formed over time

Hierarchy of scales required for the dipole 
model: τF>>τP>>τint

14

τP = lc/c = 7 ey
fm

τF =
2 Mψ

Mψ′ − Mψ

lc = 42 e
y
fm



A

dAt y>≈1 cc is produced 
coherently over entire 
nucleus and J/ψ is formed 
outside of it.

15

At -1<y<0 cc is produced coherently over a few nucleons. J/ψ is formed 
outside the nucleus. Note additional enhancement by Npart

Additional assumptions:

J/ψ is non-relativistic. Relativistic correction depends on m but not 
on energy - included in prefactor.

Parametrically small corrections due to the real part and off-
diagonal matrix elements are neglected.



2

J/Ψ

z0 z1 z20

Propagation of c-anti-c through nucleus

dσin(pA)

dY d2b
= CF x1G(x1, m

2

c)×

∫
2RA

0

ρ σ̂in(x2, r, r
′) d z0

∫
d2 r ΨG(l1, r, z = 1/2) ΨV (r)⊗

∫
d2r′ΨG(l1, r

′, z = 1/2) ΨV (r′)

×

(

e−(σ(x2,r2) + σ(x2,r′2)) ρ 2 RA

∞
∑

n=0

∫ 2RA

z0

d z1

∫ 2RA

z1

dz2 . . .

∫ 2RA

z2n

dz2n+1 ρ2n+1 σ̂2n+1
in (x2, r, r

′)

)

Only even number of inelastic interactions with the nucleus are allowed.

1

2

{

exp
(

−σ
(

x2, (r − r′)2
)

ρ 2RA

)

+exp
(

−(σ(x2, r)+σ(x2, r
′)+σ̂in(x2, r, r

′)) ρ 2RA

)

−2 exp
(

−(σ(x2, r)+σ(x2, r
′)) ρ 2RA

)

}

16

Exponentiation works 
only at large Nc



Our model vs PHENIX data 
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Breakdown of xF-scaling

α=2/3 plateau: black disk 
regime.

xF

!

dotted : "s = 200 GeV
solid : "s = 38 GeV
dashed : "s = 19 GeV

dashed-dotted : "s = 5.5 TeV
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Production of J/ψ: AA
z′0 z′3z′1

A1

2

z2z1z0

A2

We have to sum over all odd number of interactions with both  nuclei 

=

19

can be 1 ≤ k ≤ 2n− 2. Therefore, for the term inside the curly brackets in (4.1) we have

{. . . } =
∫ 2RA2

0

∫ 2RA1

0

(
1
8

Q2
s,A2

) (
1
8

Q2
s,A1

)
(2r · r′)2 dz0 dz′0 exp

{
−1

8
(r2 + r′2) (Q2

s,A1
+ Q2

s,A2
)
}

×
2n−2∑

k=1

∫ 2RA2

z0

d z1

∫ 2RA2

z1

dz2 . . .

∫ 2RA2

zk−2

dzk−1 ρk

(
1
8

Q2
s,A2

2 r · r′
)k−1

×
∞∑

n=2

∫ 2RA1

z′0

d z′1

∫ 2RA1

z′1

dz′2 . . .

∫ 2RA1

z′2n−k−2

dz′2n−k−1 ρ2n−k−1

(
1
8

Q2
s,A1

2 r · r′
)2n−k−2

(4.2)

Using the following mathematical identity

j−1∑

k=1

1
k!(j − k)!

ak bj−k =
1
j!

(a + b)j − 1
j!

aj − 1
j!

bj (4.3)

with j = 2n− 1 we obtain

∞∑

n=2

{
1

(2n− 1)!

(
1
8

(Q2
s,A1

+ Q2
s,A2

) 2 r · r′
)2n−1

− 1
(2n− 1)!

(
1
8

Q2
s,A1

2 r · r′
)2n−1

− 1
(2n− 1)!

(
1
8

Q2
s,A2

2 r · r′
)2n−1

}

= sinh
(

1
8

(Q2
s,A1

+ Q2
s,A2

) 2 r · r′
)
− sinh

(
1
8

Q2
s,A1

2 r · r′
)
− sinh

(
1
8

Q2
s,A2

2 r · r′
)

. (4.4)

yielding (4.1). If Q2
s,A2

$ Q2
s,A1

we can expand (4.4) using sinh(a + b)− sinh a− sinh b ≈ b (cosh a− 1) +O(b2); then
(4.1) reduces to (3.8).

For a qualitative discussion it is instructive to rewrite (4.1) in the region r′ $ r ≈ 1/Qs,A $ 1/mc. Expanding
expression in the curly brackets we derive

{. . . } =
1
64

Q2
s,A1

Q2
s,A2

(Q2
s,A1

+ Q2
s,A2

) (r · r′)3
(
1 + O(Q2

s,Ar′2 , Q4
s,Ar′2r2)

)
exp

(
−1

8
(Q2

s,A1
+ Q2

s,A2
) r2

)
. (4.5)

In this approximation Eq. (4.1) becomes (after integration over the angle between r and r′)

1
SA

dσ(AA)
dY d2b

∝
∫

d2r ΨG(l1, r, z = 1/2)⊗ΨV (r)
∫

d2r′ Ψ∗
G(l1, r′, z′ = 1/2)⊗Ψ∗

V (r′)

×Q2
s,A1

Q2
s,A2

(Q2
s,A1

+ Q2
s,A2

) r2 r′2 exp
{
−r2 (Q2

s,A1
+ Q2

s,A2
)/8

}
(4.6)

∝
Q2

s,A1
Q2

s,A2

(Q2
s,A1

+ Q2
s,A2

)3
. (4.7)

In (4.7) we replaced the wave functions of (3.2) by a constant as already discussed in Sec. 3.3 and took the integral
over the angle between #r and #r′.

From (4.7) one can see that the spectrum of J/ψ’s in ion-ion collisions is more narrow than the one in hadron-
hadron. Explicitly

dσ(AA)
dY

∝ dσ(pp)
dY

1
(Q2

s,A1
+ Q2

s,A2
)3
∝ dσ(pp)

dY
e−3λ|Y | , (4.8)
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can be 1 ≤ k ≤ 2n− 2. Therefore, for the term inside the curly brackets in (4.1) we have

{. . . } =
∫ 2RA2

0

∫ 2RA1

0

(
1
8

Q2
s,A2

) (
1
8

Q2
s,A1

)
(2r · r′)2 dz0 dz′0 exp

{
−1

8
(r2 + r′2) (Q2

s,A1
+ Q2

s,A2
)
}

×
2n−2∑

k=1

∫ 2RA2

z0

d z1

∫ 2RA2

z1

dz2 . . .

∫ 2RA2

zk−2

dzk−1 ρk

(
1
8

Q2
s,A2

2 r · r′
)k−1

×
∞∑

n=2

∫ 2RA1

z′0

d z′1

∫ 2RA1

z′1

dz′2 . . .

∫ 2RA1

z′2n−k−2

dz′2n−k−1 ρ2n−k−1

(
1
8

Q2
s,A1

2 r · r′
)2n−k−2

(4.2)

Using the following mathematical identity

j−1∑

k=1

1
k!(j − k)!

ak bj−k =
1
j!

(a + b)j − 1
j!

aj − 1
j!

bj (4.3)

with j = 2n− 1 we obtain

∞∑

n=2

{
1

(2n− 1)!

(
1
8

(Q2
s,A1

+ Q2
s,A2

) 2 r · r′
)2n−1

− 1
(2n− 1)!

(
1
8

Q2
s,A1

2 r · r′
)2n−1

− 1
(2n− 1)!

(
1
8

Q2
s,A2

2 r · r′
)2n−1

}

= sinh
(

1
8

(Q2
s,A1

+ Q2
s,A2

) 2 r · r′
)
− sinh

(
1
8

Q2
s,A1

2 r · r′
)
− sinh

(
1
8

Q2
s,A2

2 r · r′
)

. (4.4)

yielding (4.1). If Q2
s,A2

$ Q2
s,A1

we can expand (4.4) using sinh(a + b)− sinh a− sinh b ≈ b (cosh a− 1) +O(b2); then
(4.1) reduces to (3.8).

For a qualitative discussion it is instructive to rewrite (4.1) in the region r′ $ r ≈ 1/Qs,A $ 1/mc. Expanding
expression in the curly brackets we derive

{. . . } =
1
64

Q2
s,A1

Q2
s,A2

(Q2
s,A1

+ Q2
s,A2

) (r · r′)3
(
1 + O(Q2

s,Ar′2 , Q4
s,Ar′2r2)

)
exp

(
−1

8
(Q2

s,A1
+ Q2

s,A2
) r2

)
. (4.5)

In this approximation Eq. (4.1) becomes (after integration over the angle between r and r′)

1
SA

dσ(AA)
dY d2b

∝
∫

d2r ΨG(l1, r, z = 1/2)⊗ΨV (r)
∫

d2r′ Ψ∗
G(l1, r′, z′ = 1/2)⊗Ψ∗

V (r′)

×Q2
s,A1

Q2
s,A2

(Q2
s,A1

+ Q2
s,A2

) r2 r′2 exp
{
−r2 (Q2

s,A1
+ Q2

s,A2
)/8

}
(4.6)

∝
Q2

s,A1
Q2

s,A2

(Q2
s,A1

+ Q2
s,A2

)3
. (4.7)

In (4.7) we replaced the wave functions of (3.2) by a constant as already discussed in Sec. 3.3 and took the integral
over the angle between #r and #r′.

From (4.7) one can see that the spectrum of J/ψ’s in ion-ion collisions is more narrow than the one in hadron-
hadron. Explicitly

dσ(AA)
dY

∝ dσ(pp)
dY

1
(Q2

s,A1
+ Q2

s,A2
)3
∝ dσ(pp)

dY
e−3λ|Y | , (4.8)
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Approximately (for r>>r’):

In Fig. 9 we plot the result of our calcula-

R(Y))

Y

0
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0.8

1

-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 9: Rapidity dependence of the ratio R(Y ) =
dσ
dY (Y )

dσ
dY (Y =0)

for the gold-gold collision at RHIC. For the saturation momenta
the KLN expression was used.

tion for the ratio R(Y ) ≡ dσ
dY (Y )/ dσ

dY (Y = 0)
using (4.9). For gold-gold collision at RHIC
with

√
s = 200 GeV taking the KLN value

for the saturation momentum Q2
s(y = 0) =

2.2 GeV2 for central collisions we find that the
rapidity distribution turns out to be very nar-
row although not quite to an extent suggested
by the approximate expression (4.8) (see Fig. 9).
The rapidity distribution in Fig. 9 is driven by
the ratio Q2

s,A1
Q2

s,A2
/Q6

s. The cross section
decreases with the increase of the value of the
saturation momentum Qs. However, this de-
crease is much milder than in (4.8).

5. Numerical calculations

In this section we perform numerical calcula-
tions of inclusive J/Ψ production using (4.1).
First of all, we reinstall the impact parameter
dependence of the saturation scales and con-
sider a realistic distribution density for nuclei.

Recall that Q2
s ∝ ρT (b). Denote the impact parameter between centers of two nuclei as b. The position of

a nucleon inside nucleus A1 with respect to its center denote by s. Then the position of a nucleon in the
nucleus A2 is given by b− s. We have

Q2
s,A1

→ Q2
s,A1

(s) , Q2
s,A2

→ Q2
s,A2

(b− s) . (5.1)

In our Glauber-type approximation (see e.g. [57]) we neglect the impact parameter dependence in nucleon-
nucleon interactions considering their range much smaller than the size of nuclei. The observable that we
are going to calculate is the number of J/Ψ’s inclusively produced in nucleus–nucleus collisions at a given
rapidity Y and a centrality characterized by the impact parameter b. The corresponding expression reads

dNAA(Y, b)
dY

∝
∫

d2sQ2
s,A1

(x1, s) Q2
s,A2

(x2, b− s) (Q2
s,A1

(x1, s) + Q2
s,A2

(x2, b− s))

×
∫ ∞

0
dζ ζ9 K2(ζ) exp

(
− ζ2

8 m2
c

(
Q2

s,A1
(x1, s) + Q2

s,A2
(x2, b− s)

))
. (5.2)

where
x1 =

mJ/Ψ,t√
s

e−Y , x2 =
mJ/Ψ,t√

s
eY (5.3)

with m2
J/Ψ,t = m2

J/Ψ + p2
t , pt being the transverse momentum of the J/Ψ.
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Figure 10: J/ψ rapidity distribution in Au-Au collisions for different centrality cuts. Experimental data from [59].

We can also write down (5.2) in the following way:

dNAA(Y, b)
dY

= C
dNpp(Y )

dY

∫
d2s TA1(s) TA2 (b− s)

(
Q2

s,A1
(x1, s) + Q2

s,A2
(x2, b− s)

) 1
m2

c

×
∫ ∞

0
dζ ζ9 K2(ζ) exp

(
− ζ2

8m2
c

(
Q2

s,A1
(x1, s) + Q2

s,A2
(x2, b− s)

))
. (5.4)

The overall normalization constant C includes the color and the geometric factors C2
F /(4π2αsSp) where Sp

is interaction area in proton–proton collisions. C also includes the amplitude of charm quark–antiquark
transition into J/Ψ and a gluon in the case of pp collisions (see Fig. 6-A). This amplitude as well as the
mechanism of Fig. 6-A have a significant theoretical uncertainty. Therefore, we decided to parameterize
these contributions by an overall normalization constant in (5.4).

The rapidity distribution of J/ψ’s in pp collisions, the factor dNpp/dY appearing in Eq. 5.4, is fitted to
the experimental data given in [58] with a single gaussian. In figure 10 the results provided by Eq. 5.4 are
then compared to experimental data of PHENIX Collab. [59] for Au-Au collisions at

√
s = 200 GeV. The

global normalization factor C is found from the overall fit to the data. There are no other free parameters.
The agreement of the theoretical results (solid lines) with experimental data is reasonable. In the same
figure the dashed lines (for the two most central bins) show the dNpp/dY factor rescaled for comparison to
the complete result: it is evident that the J/ψ distribution in nucleus-nucleus collisions is more suppressed
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20

Fitted to 
Phenix DAu 

data

Deeply in the saturation region where Qs,A ! mc the typical dipole sizes are much smaller than 1/mc. Thus,
we can expand the wave function (3.2) ΨG ⊗ ΨV ≈ const. The main contribution comes from (!r − !r′)2 ≤ 1/Q2

s,A

while r ≈ 1/mc. It gives

dσin (pA)
dY d2b

∝ x1G(x1,m
2
c)/Q2

s,A(x2) ∝ exp (−2 λY ) . (3.10)

In deriving (3.10) we used the same assumptions as in the case of cc̄-pair production with fixed relative momentum
(see (2.18)). One can see that (3.10) leads to a rapidity distribution that is more narrow than the distribution in
hadron–hadron collisions given by (2.19).

4. Inclusive J/ψ production in nucleus–nucleus collisions

Using the same arguments as in Sec. 2.3 which led us to (2.22) we can generalize (3.9) to obtain our main result –
the formula for J/ψ production in nucleus–nucleus collisions. It reads

1
SA

dσ(AA)
dY d2b

=
C2

F

4π2αs

∫
d2r ΨG(l1, r, z = 1/2)⊗ΨV (r)

∫
d2r′ Ψ∗

G(l1, r′, z = 1/2)⊗Ψ∗
V (r′) (4.1)

× 1
2r · r′

{
exp

(
−1

8
(r − r′)2 (Q2

s,A1
+ Q2

s,A2
)
)
− exp

(
−1

8
(r + r′)2 (Q2

s,A1
+ Q2

s,A2
)
)

− exp
(
−1

8
(r − r′)2 Q2

s,A1
− 1

8
(r2 + r′2) Q2

s,A2

)
+ exp

(
−1

8
(r + r′)2 Q2

s,A1
− 1

8
(r2 + r′2) Q2

s,A2

)

− exp
(
−1

8
(r − r′)2 Q2

s,A2
− 1

8
(r2 + r′2) Q2

s,A1

)
+ exp

(
−1

8
(r + r′)2 Q2

s,A2
− 1

8
(r2 + r′2)Q2

s,A1

)}
,

where SA is the transverse overlap area. One can check that this formula describes the hadron-nucleus J/ψ assuming
that Q2

s,A1
is small.

z′
0 z′

3z′
1

A1
2

z2z1z0

A2

Figure 8: The process of inclusive J/ψ production in nucleus-nucleus collisions due to inelastic interaction with both nuclei.

In deriving (4.1) we summed up the inelastic cross sections for both nuclei. Let us denote the nucleon coordinates
in the nucleus A1 by z′

i and in the nucleus A2 by zi. The number of possible inelastic interactions (see Fig. 8) is odd
for both nuclei. For a fixed number of total inelastic interactions 2n− 1 the number of interactions in each nucleus
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2. The width of the distribution decreases with Npart
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Cold J/ψ suppression

Mechanism of suppression: large relative 
momentum between c and anti-c makes 
the J/ψ formation less probable.
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Outlook

2. Prediction for higher energies and for χ’s

1. Better description of  peripheral data: need to calculate 
a contribution of  A+A→J/ψ+g mechanism



Summary

I showed that J/ψ production mechanism in pp and pA/AA 
collisions is different due to strong coherence effects.  
Factorization is strongly violated. 

We are convinced, that most of J/ψ suppression in AA is 
a cold nuclear matter effect.

24

I discussed hadron production in nuclear collisions at high 
energies: Generally, traditional factorization schemes are 
broken, although sometimes they approximately hold. 


