

Heavy quark production and elliptic flow at RHIC and LHC

Jan Uphoff

with O. Fochler, Z. Xu and C. Greiner

Institute for Theoretical Physics

Winter Workshop on Nuclear Dynamics

January 3, 2010

- Motivation
- Charm processes in BAMPS
- Box calculation: chemical equilibration
- Heavy quark production in heavy-ion collisions
- Elliptic flow of charm
- Summary

Motivation

BAMPS: Boltzmann Approach of MultiParton Scatterings

Transport algorithm solving the Boltzmann equations for on-shell partons with pQCD interactions

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_1}{E_1}\frac{\partial}{\partial \mathbf{r}}\right) f_1(\mathbf{r}, \mathbf{p}_1, t) = \mathcal{C}_{22} + \mathcal{C}_{23} + \cdots$$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

Implemented processes:

$$g + g \rightarrow g + g$$

 $g + g \rightarrow g + g + g$
 $g + g + g \rightarrow g + g$
(no light quarks yet)

 $c + \bar{c} \rightarrow g + g$ $g + c \rightarrow g + c$ $g + \bar{c} \rightarrow g + \bar{c}$

 $g+g \rightarrow c+\bar{c}$

Toy model: consider box of gluons with just two processes

- $g + g \rightarrow c + \bar{c}$ Initial conditions:
 - thermally distributed gluons

Rate equation:

 $c + \bar{c} \rightarrow g + g$

$$\partial_{\mu} \left(n_c u^{\mu} \right) = R_{gg \to c\bar{c}} - R_{c\bar{c} \to gg}$$

with

$$R_{gg \to c\bar{c}} = \frac{1}{2} < \sigma_{gg \to c\bar{c}} v_{rel} > n_g^2$$
$$R_{c\bar{c} \to gg} = < \sigma_{c\bar{c} \to gg} v_{rel} > n_c n_{\bar{c}}$$

Matsui, Svetitsky, McLerran, Phys. Rev. D (1986) Biro, van Doorn, Müller, Thoma, Wang, Phys. Rev. C (1993)

Box calculation $T_0 = 400 \text{ MeV}$

GOETHE

UNIVER

FRANKFURT AM MAIN

$T_0 = 400 \text{ MeV}$ 1000 1500 2000 2500 3000 3500 4000 500 0 t [fm/c]

Initial charm in hard parton scatterings

Two approaches:

1. LO pQCD: mini-jets

$$\begin{aligned} \frac{\mathrm{d}\sigma_{c\bar{c}}^{AB}}{\mathrm{d}p_{T}^{2}\mathrm{d}y_{c}\mathrm{d}y_{\bar{c}}} &= x_{1}x_{2}C(x_{1},x_{2}) \\ \text{depend on renormalization} \\ C(x_{1},x_{2}) &= f_{g}^{A}(x_{1}) f_{g}^{B}(x_{2}) \frac{\mathrm{d}\hat{\sigma}_{gg \to c\bar{c}}}{\mathrm{d}\hat{t}} + \\ & \sum_{q} \left[f_{q}^{A}(x_{1}) f_{\bar{q}}^{B}(x_{2}) + f_{\bar{q}}^{A}(x_{1}) f_{q}^{B}(x_{2}) \right] \frac{\mathrm{d}\hat{\sigma}_{q\bar{q} \to c\bar{c}}}{\mathrm{d}\hat{t}} \end{aligned}$$

Heavy quark production and elliptic flow at RHIC and LHC

depend on factorization scale μ_{F}

2. PYTHIA

Monte Carlo Event Generator for nucleon-nucleon collisions

- both very sensitive on
 parton distribution functions
 - factorization scale
 - renormalization scalecharm mass

Initial charm in hard parton scatterings

Total initial charm yield in central Au+Au collisions @ RHIC:

GOETHI

- PYTHIA:
 - 8 14 charm pairs
- LO pQCD:
 - 2 4 charm pairs

Initial gluon distribution for parton cascade GOETHE UNIVERSITÄT FRANKFURT AM MAIN

PYTHIA

scaling to heavy-ion collisions with Glauber model (considering shadowing) and energy conservation

- hard partons ~ N_{bin}: number of binary collision
- soft partons ~ A: number of nucleons in one nuclei

- Minijets
- Color glass condensate

Charm scales with number of bin. coll.

10 Au+Au BAMPS K factor or 9.9 √s = 200 GeV different charm 9.8 ---mass charm pairs 9.7 N S 9.6 factor 2 9.5 difference in charm 9.4 PYTHIA, K=1, M=1.5GeV PYTHIA, K=2, M=1.5GeV PYTHIA, K=1, M=1.3GeV production 9.3 during 9.2 **QGP** phase 2 З 5 0 4 t [fm/c]

RHIC

Jan Uphoff

RHIC

Bottom production in the QGP at LHC

GOETH

UNIVE

FRANKFURT AM MAIN

Elliptic flow v₂

$$\frac{\mathrm{d}^3 N}{p_T \mathrm{d} p_T \mathrm{d} y \mathrm{d} \phi}(p_T, y, \phi) = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_T \mathrm{d} p_T \mathrm{d} y} \left[1 + 2v_2(p_T, y)\cos(2\phi) + \ldots\right]$$

Elliptic flow v₂ for charm at RHIC

23

Elliptic flow v₂ for charm at RHIC

GOETHE

FRANKFURT AM MAIN

UNIVE

Conclusion & outlook

- Chemical equilibration time for charm very large
- Huge uncertainty on initial charm yield due to PDF and scale dependencies
 LO calculations cannot explain data
- Small charm yield during QGP phase
 - RHIC: 3 27 % of final charm are produced in QGP
 - LHC: 15 % of final charm are produced in QGP
- Negligible bottom yield during QGP phase at LHC
- LO gluon charm scattering is not sufficient to build up collective flow

Future tasks:

- Light quarks
- Higher order corrections, essentially gluon radiation for charm scattering
- Energy loss of charm quarks

Thank you for your attention.

Backup

3+1 dimensional Monte Carlo cascade

Divides collision zone into cells

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

• Using stochastic method:

$$P_{2\to2} = v_{\rm rel} \frac{\sigma_{2\to2}}{N_{\rm test}} \frac{\Delta t}{\Delta^3 x} \qquad \qquad v_{\rm rel} = \frac{\sqrt{(P_1^{\mu} P_{2\mu})^2 - m_1^2 m_2^2}}{E_1 E_2}$$

Testparticles to increase statistics

Partonic cross sections

Jan Uphoff

Charm quark scattering

LO pQCD:

Partonic cross sections

Elliptic flow v₂ for charm at RHIC

