CAPACITORS

- The potential difference between two charged plates A and B is related to the E-field via: $V=E d$.
- Definition: The capacitance C is a proportionality constant that relates q to $V: q=C V$ or $C=q / V$, SI Unit: 1 Farad $=1 F=1 C / V$
- Parallel capacitor: (q is the total charge on one plate): $4 \pi k q=E A=(V / d) A \Rightarrow$ $C=q / V=A /(4 \pi k d)=\epsilon_{0} A / d$
- Cylindrical capacitor: $C=2 \pi \epsilon_{0} L /(\ln (b / a)$, where a and b correspond to the radius of the inner and outer plate, respectively.
- Spherical capacitor: $C=4 \pi \epsilon_{0} a b /(b-a)$, where a and b correspond to the radius of the inner and outer spheres, respectively.
- Isolated Sphere: $C=4 \pi \epsilon_{0} R=k R$.

CAPACITORS IN PARALLEL

- The sides of two capacitors connected together are on the same potential: $V_{1}=V_{2}=V$. The charges on each capacitor are: $q_{1}=C_{1} V$ and $q_{2}=C_{2} V$. The total charge is : $q=q_{1}+q_{2}$.
Therefore, the capacitance of the equivalent capacitor is:
$C_{p}=q / V=\left(q_{1}+q_{2}\right) / V=C_{1}+C_{2} \Rightarrow C_{p}=C_{1}+C_{2}$, or for n capacitors in parallel: $C=\sum_{i}^{n} C_{i}$.

CAPACITORS IN SERIES

- If the capacitors are connected in series the two connected plates in the middle have zero net charge. Therefore the charges on both capacitors are equal: $q_{1}=q_{2}=q$.
The total voltage is then $q / C_{s}=V=V_{1}+V_{2}=q_{1} / C_{1}+q_{2} / C_{2}=q / C_{1}+q / C_{2} \Rightarrow$ $1 / C_{s}=1 / C_{1}+1 / C_{2}$, or for n capacitors in series: $1 / C=\sum_{i}^{n} 1 / C_{i}$.

ENERGY STORED IN A CAPACITOR

- Potential energy differences are created by transporting charge from one plate to the other. $W=V q / 2$ with $q=C V \Rightarrow W=q^{2} /(2 C)=C V^{2} / 2$.

DIELECTRICS

- Dielectrics are materials composed of permanent dipoles which can be reoriented but cannot move. The dipoles align and partially compensate the external field. With fixed charges in the capacitor, the E-field between the plates is reduced with the dielectric present as compared to without.
- Definition: Dielectric constant, $\kappa, \kappa=C_{\kappa} / C_{0}=E_{0} / E_{\kappa}=V_{0} / V_{\kappa}$ where E_{0} is the electric field without the dielectric present, and E_{κ} is the field with it present.
- With the permittivity of the dielectric material $\epsilon=\epsilon_{0} \kappa: C_{\kappa}=\kappa C_{0}=\epsilon_{0} \kappa A / d=\epsilon A / d$.

CURRENT AND CIRCUITS

ELECTRIC CURRENT

- Amount of current $=$ amount of charge that passes per time unit through an area perpendicular to the flow: $i=d q / d t$, Unit: C/s $=\mathrm{A}$ (Ampere).
- The current density is defined as $J=i / A$, where A is the cross sectional area.
- Convention: Direction of current $=$ direction of positive charge flow. Since e^{-}are the moving charges, the defined direction of the current is opposite to the direction of the physical current.
- The current is related to the electron drift velocity which is amazingly small: $v_{d}=J /(n e)$ It is typically $/ \mathrm{sim} \mathrm{mm} / \mathrm{s}$. ne is the charge carrier density.
- Why does current flow instantaneously? Because of the E-field which moves with speed of light, which causes all electrons in wire to drift at the same time.

RESISTANCES

- If one connects a wire between both terminals of a battery, a current flows. The resistance is defined as $R=V / i$ (Ohm's law), Unit: Ω.
- Physical reason for resistance: Scattering of the conduction electrons off obstacles in the conductor. Ohm's law is not generally valid, but it is a good empirical rule for most systems.
- The resistivity is defined as $\rho=E / J$.
- The overall resistance of a wire should be proportional to its length and inversely proportional to its cross sectional area The proportionality constant is called resistivity, ρ.
$R=\rho L / A \Rightarrow \rho=R A / L$, Unit: Ωm
- The resistivities are temperature dependent due to thermal vibrations in the material: $\rho-\rho_{0}=\rho_{0} \alpha\left(T-T_{0}\right)$.
- Resistivities are usually tabulated at room temperature, $20^{\circ} \mathrm{C}$.
- The conductivity is: $\sigma=1 / \rho$.

POWER DISSIPATION IN A SIMPLE CIRCUIT

- Potential drop across resistor (Ohm's law): $V=i R$.
- Since charge is transported from the positive end of the load resistor to the negative end across a potential V, it loses potential energy $P E_{\text {elec }}=V \Delta q=V i \Delta t$. This potential energy is converted into some other form of energy, here: heat (Joule heating).
- The power dissipated is the change in potential energy (work) per time unit: $P=\Delta W / \Delta t=V i \Delta t / \Delta t=V i$.
- Using $V=R i$, we can also write for the power $P=i^{2} R=V^{2} / R$.

