## BATTERIES

- Batteries supply a potential difference which is called an electromotive force (emf). This emf is defined by the work $d W$ done on a charge $d q: \mathcal{E}=d W / d q$.
- Real batteries have an internal resistance $r$ when current is drawn from the battery. This internal resistance reduces the nominal emf according to Ohm's law to the terminal voltage (TV) which is given by $T V=\mathcal{E}-i r$.
- Ideal batteries do not have any internal resistances.


## KIRCHHOFF'S RULES

- Kirchhoff's first rule: (Junction Rule) The sum of the currents flowing into a junction is equal to the sum of the currents flowing out of the junction (conservation of charge).
- Kirchhoff's second rule: (Loop Rule) The sum of the potential drops is equal to the sum of the potential rises within a closed loop (conservation of energy).
- Resistance rule: For a move through a resistor in the direction of the current, the change in potential is $-i R$, in the opposite direction it is $+i R$.
emf rule: For a move through an ideal emf device in the direction of the emf arrow, the change in potential is $+\mathcal{E}$, in the opposite direction it is $-\mathcal{E}$.


## RESISTORS IN SERIES AND IN PARALLEL

- For two resistors in series the current that flows through the circuit is the same everywhere and the voltage drops across the resistors add up:
$\mathcal{E}=V_{1}+V_{2}=i_{1} R_{1}+i_{2} R_{2}=i R_{1}+i R_{2}=i\left(R_{1}+R_{2}\right)=i R_{s} \Rightarrow R_{s}=R_{1}+R_{2}$
or for $n$ resistors in series: $R_{s}=\sum_{i}^{n} R_{i}$.
- For two parallel resistors the potential drop across each resistor is constant: $\mathcal{E}=V_{1}=V_{2}$, and the current that flow through the individual resistors add up to the total current:
$i=i_{1}+i_{2}=V_{1} / R_{1}+V_{2} / R_{2}=\mathcal{E} / R_{1}+\mathcal{E} / R_{2}=\mathcal{E}\left(1 / R_{1}+1 / R_{2}\right)=\mathcal{E} / R_{p} \Rightarrow 1 / R_{p}=1 / R_{1}+1 / R_{2}$ or for $n$ resistors in parallel: $1 / R_{p}=\sum_{i}^{n} 1 / R_{i}$.


## CHARGING AND DISCHARGING A CAPACITOR

- It takes time to put charges onto a capacitor. Initally it is fast, but as more charges are on the capacitor it becomes harder: $q=C \mathcal{E}\left(1-e^{-t / R C}\right), i=(\mathcal{E} / R) e^{-t / R C} . R C$ is called the time constant of the circuit.
- Discharging the capacitor is again fast at the beginning, getting slower the fewer charges are left on the capacitor: $q=q_{0} e^{-t / R C}, i=-\left(q_{0} / R C\right) e^{-t / R C}$.


## MAGNETISM

MAGNETIC FIELD

- Magnets have two poles, named North (N) and South (S). Magnets have magnetic field lines extending from the North pole to the South pole. Two like poles repel, two unlike poles attract each other.
- The magnetic field exerts a force on a moving charge: $\vec{F}_{B}=q \vec{v} \times \vec{B}$. The magnitude of this force is $F_{B}=|q| v B \sin \Phi$, where $\Phi$ is the angle between the directions of the velocity and the field.
- The direction of the $\vec{B}$-field is given by a Right-hand-rule:

When the fingers sweep $\vec{v}$ into $\vec{B}$, the thumb points for positive charges in the direction of the force $\vec{F}_{B}$. Units of B:1 Tesla $(T)=N s / C m=V s / m^{2}$ Other unit: 1 Gauss $(G): 1 G=10^{-4} T$

## TRAJECTORY OF CHARGES IN CONSTANT B-FIELDS

- The magnetic force $F_{B}$ on a charge moving perpendicular to a magnetic field causes a circular motion. It is a centripetal force: $F_{c}=m v^{2} / r$. Therefore: $F_{m}=F_{c} \Rightarrow q v B=m v^{2} / r$.
- Solving for the radius of the orbit: $r=m v /(q B)$. The frequency is then $f_{\text {osc }}=1 / T=q B /(2 \pi m)$.


## HALL EFFECT

- Moving electrons in a wire ( $=$ current) can be deflected by a magnetic field which produces a (Hall) potential difference. In the equilibrium $\left(F_{E}=F_{B}\right)$ it is possible to measure the charge density $n=B i /($ Vle $)$, where $l$ is the thickness of the strip of wire.


## FORCE ON A CURRENT

- Current consists of moving charges. The magnitude of the magnetic force on a wire of length $L$ with current $i$ due to a magnetic field $B$ is given by $\vec{F}_{B}=i \vec{L} \times \vec{B}, F_{B}=i L B \sin \theta$, where $\theta$ is the angle between the wire (current) and the magnetic field.


## TORQUE ON A CURRENT CARRYING COIL

- Assume a coil in a magnetic field $\vec{B}$. For one loop of the coil: The forces on the current in pivoted part of the loop are equal and in opposite directions $(\vec{B} \perp \vec{i})$ and thus there is no net torque.
- The force on the current $I$ in the non-pivoted side of the loop (width $a$ ) is $F=i a B$.
- The torque $\vec{\tau}$ on one side of the loop is $\tau=(b / 2) F \sin \theta$, where $\theta$ is the angle between the normal to the loop and the magnetic field.
- Thus, the total torque on the loop (the two opposite sides add up) is $\tau=(b / 2) i a B \sin \theta+(b / 2) i a B \sin \theta=i A B \sin \theta$ where the area of the loop is $A=a b$.
- When the coil consists of $N$ loops the total torque is $\tau=N i A B \sin \theta$.
- The magnetic moment of the coil is defined as: $\mu=N i A$ and thus the torque is given by $\vec{\tau}=\vec{\mu} \times \vec{B}$.

