BATTERIES

- Batteries supply a potential difference which is called an *electromotive force* (emf). This emf is defined by the work dW done on a charge dq: $\mathcal{E} = dW/dq$.
- Real batteries have an internal resistance r when current is drawn from the battery. This internal resistance reduces the nominal *emf* according to Ohm's law to the *terminal voltage* (TV) which is given by $TV = \mathcal{E} ir$.
- Ideal batteries do not have any internal resistances.

KIRCHHOFF'S RULES

- *Kirchhoff's first rule: (Junction Rule)* The sum of the currents flowing into a junction is equal to the sum of the currents flowing out of the junction (conservation of charge).
- *Kirchhoff's second rule: (Loop Rule)* The sum of the potential drops is equal to the sum of the potential rises within a closed loop (conservation of energy).
- Resistance rule: For a move through a resistor in the direction of the current, the change in potential is -iR, in the opposite direction it is +iR. emf rule: For a move through an ideal emf device in the direction of the emf arrow, the change in potential is $+\mathcal{E}$, in the opposite direction it is $-\mathcal{E}$.

RESISTORS IN SERIES AND IN PARALLEL

- For two resistors in series the current that flows through the circuit is the same everywhere and the voltage drops across the resistors add up: $\mathcal{E} = V_1 + V_2 = i_1 R_1 + i_2 R_2 = i R_1 + i R_2 = i (R_1 + R_2) = i R_s \Rightarrow R_s = R_1 + R_2$ or for *n* resistors in series: $R_s = \sum_i^n R_i$.
- For two parallel resistors the potential drop across each resistor is constant: $\mathcal{E} = V_1 = V_2$, and the current that flow through the individual resistors add up to the total current: $i = i_1 + i_2 = V_1/R_1 + V_2/R_2 = \mathcal{E}/R_1 + \mathcal{E}/R_2 = \mathcal{E}(1/R_1 + 1/R_2) = \mathcal{E}/R_p \Rightarrow 1/R_p = 1/R_1 + 1/R_2$ or for *n* resistors in parallel: $1/R_p = \sum_{i=1}^{n} 1/R_i$.

CHARGING AND DISCHARGING A CAPACITOR

- It takes time to put charges onto a capacitor. Initially it is fast, but as more charges are on the capacitor it becomes harder: $q = C\mathcal{E}(1 e^{-t/RC}), i = (\mathcal{E}/R)e^{-t/RC}$. RC is called the time constant of the circuit.
- Discharging the capacitor is again fast at the beginning, getting slower the fewer charges are left on the capacitor: $q = q_0 e^{-t/RC}$, $i = -(q_0/RC)e^{-t/RC}$.

MAGNETISM

MAGNETIC FIELD

- Magnets have two *poles*, named North (N) and South (S). Magnets have *magnetic field lines* extending from the North pole to the South pole. Two like poles repel, two unlike poles attract each other.
- The magnetic field exerts a force on a **moving** charge: $\vec{F}_B = q\vec{v} \times \vec{B}$. The magnitude of this force is $F_B = |q|vB\sin\Phi$, where Φ is the angle between the directions of the velocity and the field.
- The direction of the \$\vec{B}\$-field is given by a Right-hand-rule: When the fingers sweep \$\vec{v}\$ into \$\vec{B}\$, the thumb points for positive charges in the direction of the force \$\vec{F}_B\$. Units of \$B\$: 1 Tesla (T) = \$Ns/Cm = Vs/m^2\$ Other unit: 1 \$Gauss(G): 1G = 10^{-4}T\$

TRAJECTORY OF CHARGES IN CONSTANT B-FIELDS

- The magnetic force F_B on a charge moving perpendicular to a magnetic field causes a circular motion. It is a centripetal force: $F_c = m v^2/r$. Therefore: $F_m = F_c \Rightarrow q v B = m v^2/r$.
- Solving for the radius of the orbit: r = m v/(q B). The frequency is then $f_{osc} = 1/T = q B/(2\pi m)$.

HALL EFFECT

• Moving electrons in a wire (= current) can be deflected by a magnetic field which produces a (Hall) potential difference. In the equilibrium $(F_E = F_B)$ it is possible to measure the charge density n = Bi/(Vle), where l is the thickness of the strip of wire.

FORCE ON A CURRENT

• Current consists of moving charges. The magnitude of the magnetic force on a wire of length L with current i due to a magnetic field B is given by $\vec{F}_B = i\vec{L} \times \vec{B}$, $F_B = iLB \sin\theta$, where θ is the angle between the wire (current) and the magnetic field.

TORQUE ON A CURRENT CARRYING COIL

- Assume a coil in a magnetic field \vec{B} . For one loop of the coil: The forces on the current in pivoted part of the loop are equal and in opposite directions $(\vec{B} \perp \vec{i})$ and thus there is no net torque.
- The force on the current I in the non-pivoted side of the loop (width a) is F = iaB.
- The torque $\vec{\tau}$ on one side of the loop is $\tau = (b/2)F\sin\theta$, where θ is the angle between the normal to the loop and the magnetic field.
- Thus, the total torque on the loop (the two opposite sides add up) is $\tau = (b/2)iaB\sin\theta + (b/2)iaB\sin\theta = iAB\sin\theta$ where the area of the loop is A = ab.
- When the coil consists of N loops the total torque is $\tau = NiAB \sin \theta$.
- The magnetic moment of the coil is defined as: $\mu = NiA$ and thus the torque is given by $\vec{\tau} = \vec{\mu} \times \vec{B}$.