Q1 - Answer = c Q2 - Problem A - Last name A-K

A piano key produces 3 beats/second when it is played along with a tuning fork of frequency 256 Hz. It is noted that the beat frequency increases when the string is tightened. What is the frequency of the string?

A. 250 Hz $f = |f_f - f_p| = 3 \text{ and } f_f = 256$ B. 253 HzThus $f_p = 259$ Hz or 253 HzC. 259 HzSince $v = f = (T/\mu)^{1/2}$, fD. 262 Hzfrequency increases, f_p E. 254.5 Hzmoves away from f_f . Thus $f_p = 259$ Hz

Q1 - Answer = c Q2 - Problem B - Last Na me L-Z

• A tuning fork with frequency 400 Hz produces 2 beats/second when struck along a guitar string. When the string is tightened, it is noted that the beat frequency decreases. What is the frequency of vibration of the guitar string?

A. 396 Hz	$f = f_f - f_p = 2$ and $f_f = 400 \ Hz$
В. <u>398 Hz</u>	Thus $f_p = 398$ Hz or 402 Hz
C. 399 Hz	Since $v = f = (T/\mu)^{1/2}$, f
D. 402 Hz	frequency, f_p moves toward f_f .
E. 404 Hz	Thus $f_p = 398$ Hz