Q1 - Answer = c Q2 - Problem A - Last name A-K

A pipe, open at both ends resonates at a first harmonic frequency f_{open} . If one end is closed its first harmonic frequency is f_{closed} . How do the two frequencies compare?

- A. $f_{open} = f_{closed}$
- **B**. $\underline{\mathbf{f}}_{open} = \underline{2} \underline{\mathbf{f}}_{closed}$
- C. $f_{closed} = 2 f_{open}$
- D. $f_{open} = 3/2 f_{closed}$
- E. $f_{closed} = 3/2 f_{open}$

$$f_{open} = v/(2L) \& f_{closed} = v/(4L)$$

Thus
$$2f_{closed} = f_{open}$$

8-Dec-99

Q1 - Answer = c Q2 - Problem B - Last Na me L-Z

• Two pipes, one open on both ends with length L_{open}, the other closed on one end with length L_{closed}, have identical first harmonic resonant frequencies. How do the two lengths compare?

A.
$$L_{open} = L_{closed}$$

B. $\underline{L}_{open} = \underline{2} \underline{L}_{closed}$
C. $L_{closed} = 2 L_{open}$
D. $L_{open} = 3/2 L_{closed}$
E. $L_{closed} = 3/2 L_{open}$