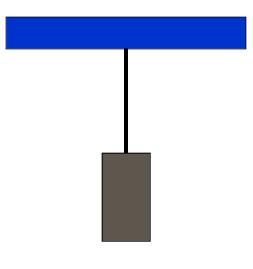
Q1 - Answer = a Q2 - Problem A - Last name A-K

A 75 cm long steel wire with diameter 0.5 mm is stretched by a force of 1500 N. If Young's modulus for steel is 200 GPa (200 x 10⁹ Pa), how much does the wire stretch (in cm)?


- A. 9.0 $L/L=F/((d/2)^2)/Y=$
- B. 0.7 1500/($(0.260^{-3})^2)/2x10^{11}$
- C. $3 \times 10^{-3} = 0.038;$
- D. **2.9** L=0.038x75=2.9 cm

E. 1.25

Q1 - Answer = a Q2 - Problem B - Last Na me L-Z

 How much force (in N) must be applied to a 1.5 m steel wire of 0.4 mm diameter to make its fractional length change by 2%? Take Y = 200 GPa (200 x 10⁹ Pa) for the value of Young's modulus for steel.

A. 160 N	F= L/L A Y
В. 500 N	$=0.02 (2x10^{-4})^2 2x10^{11}$
C. $5 \times 10^4 \text{ N}$	=500 N
D. 2010 N	
E. 2.5 x10 ⁶ N	

Q1 - Answer = b Q2 - Problem A - Last name A-K

The ultimate strength of human bone under compression is 150 MPa (1.5 x 10^8 Pa). Taking the effective area of the femur to be 3.0 cm², what force is required to crush it?

- A. 4.5 x 10^{4} N F = F/A x A=1.5x10⁸x3x10⁻⁴
- B. $4.5 \ge 10^8 \ \text{N}$ = $4.5 \ge 10^4 \ \text{N}$
- C. $1.4 \times 10^4 \text{ N}$
- D. 1.1 x 10⁹ N
- E. $3.1 \times 10^3 \text{ N}$

Q1 - Answer = b Q2 - Problem B - Last Na me L-Z

- A weight lifter holds a weight overhead with both arms. If the total effective bone area in both arms is 2.5 cm² and if the ultimate strength of bone is 1.1 x10⁸ Pa, how much weight (in N) can he support before his arms are crushed?
- A. 2.7x 10⁸ $F = F/A x A = 1.1x10^8x2.5x10^{-4}$
- B. $1.3 \ge 10^3 \ \text{N}$ = $2.8 \ge 10^4 \ \text{N}$
- C. 5.4 x 10⁴ N
- D. 8.6 x 10⁴ N

E. <u>2.8 x 10⁴ N</u>

Q1 - Answer = c Q2 - Problem A - Last name A-K

A 1.5 m long steel wire with diameter 0.5 mm is stretched by a force of 500 N. If Young's modulus for steel is 200 GPa (200×10^9 Pa), how much does the wire stretch?

- A. 0.9cm L=L/Y F/A
- B. 1.3 cm = $150/2x10^{11}500/((2.5x10^{-4})^2))$
- C. <u>**1.9** cm</u> =1.9 cm
- D. 52 cm
- E. 17 cm

Q1 - Answer = c Q2 - Problem B - Last Na me L-Z

- How much force must be applied to a 2 m steel wire of 0.6 mm diameter to make its length change by 3%? Take Y = 200 GPa (200 x 10⁹ Pa) for the value of Young's modulus for steel.
- A. 850 B. $6.8 \ge 10^4 \ \text{N}$ C. $3.4 \ge 10^3 \ \text{N}$ D. $1.7 \ge 10^3 \ \text{N}$ F= L/LxAxY =(0.03) $(3 \ge 10^{-4})^2 2 \ge 10^{11}$ = 1.7 $\ge 10^3 \ \text{N}$

E. 540 N