Postulates of Group Theory

PHY 853, Fall Semester, 1999 Chip Brock, brockchip.pa.msu.edu

October 3, 1999

- 1. A group is a set of abstract elements $g \in \{a, b, c, ... \text{ for which there}$ is a single composition law, \circ , (normally called "multiplication") which satisfies the following four postulates:
 - (a) If a and $b \in \mathcal{G}$ and $c = a \circ b$, then $c \in \mathcal{G}$. This is closure, or sometimes called the "group property".
 - (b) $(a \circ b) \circ c = a \circ (b \circ c)$
 - (c) $\exists g_i \equiv e$ such that $e \circ g_i = g_i \circ e = g_i$. This insures the existence of the identity.
 - (d) $\forall_{g_i \in \mathcal{G}} \exists g'$ such that $g \circ g' = g' \circ g = e$. This insures the existence of the inverse for all elements.
- 2. The **order** of a group is the number of elements ... it can be finite or infinite.
- 3. Abelian Groups are those in which the elements commute.
- 4. Discrete Groups are those which have a countable, finite order.
- 5. Two groups which have the same multiplication table are **isomorphic** ... a 1 : 1 mapping exists between the elements.
- 6. If, from a group \mathcal{G} , a subset of elements, \mathcal{H} , can be selected which itself forms a group having the same combinatoric law of \mathcal{G} , then \mathcal{H} is a **subgroup** of \mathcal{G} .
- 7. The Dihedral Group, D_3 in three dimensions can be realized as the set of rotations of an equilateral triangle.

The elements $\{a, b, c\}$ are rotations by π through an axis through the vertices A, B, C and the center of the triangle. The elements $\{d, f\}$ are rotations in the plane of the triangle of $\frac{2\pi}{3}$ and $\frac{4\pi}{3}$, clockwise about the center of the triangle. The multiplication table for D₃ is:

0	e	a	b	c	d	f
e	e	a	b	c	d	f
a	a	e	f	d	c	b
b	b	d	e	f	a	c
c	c	f	d	e	b	a
d	d	b	c	a	f	e
f	f	c	$egin{array}{c} b \ f \ e \ d \ c \ a \end{array}$	b	e	d

- 8. Two groups \mathcal{G} and \mathcal{H} are **homomorphic** if some $h_1 \in \mathcal{H}$ can be associated with each element in \mathcal{G} such that if $g_1 \circ g_2 = g_3 \in \mathcal{G}$ that $h_1 \circ h_2 = h_3 \in \mathcal{H}$.
- 9. A **complex** is a set of elements from a group.
- 10. Within a group \mathcal{G} , $g_i \in \mathcal{G}$ and $g_j \in \mathcal{G}$ are conjugate elements if there exists some $g_h \in \mathcal{G}$, $\exists g_i = g_h \circ g_j \circ g_h^{-1}$.
- 11. Elements which are conjugates to one another are together elments of a **class**. Each element belongs to only one class.
- 12. If \mathcal{H} is a subgroup of \mathcal{G} and $g \in \mathcal{G}$ then $\mathcal{H}' = \{g \circ h \circ g^{-1}; h \in \mathcal{H}\}$ also forms a subgroup of $\mathcal{G}, \mathcal{H}'$ is a **conjugate subgroup** of \mathcal{G} .
- 13. An **invariant subgroup** is a subgroup, \mathcal{H} of \mathcal{G} which is identical to all of its conjugate subgroups.
- 14. A group is **simple** if it does not contain any nontrivial invariant subgroups. A group is **semisimple** if it does not contain any Abelian invariant subgroups.
- 15. Let $\mathcal{H} = \{h_1, h_2, h_3, ...\}$ be a subgroup of $\mathcal{G} = \{g\}$ where $\{g'\}$ is a complex of \mathcal{G} not in \mathcal{H} . Then $\{g' \circ h_1, g' \circ h_2, ...\}$ is called a **left-coset** of \mathcal{H} . $\{h_1 \circ g', h_2 \circ g', ...\}$ is called a **right-coset** of \mathcal{H} . These are not subgroups.
- 16. Let \mathcal{H}_1 and \mathcal{H}_2 be subgroups of \mathcal{G} with:
 - (a) one element in common,
 - (b) every element of \mathcal{H}_1 commuting with every element of \mathcal{H}_2 , and
 - (c) every element of \mathcal{G} can be written as $g = h_1 \circ h_2$,

then \mathcal{G} is a direct product group, $\mathcal{G} = \mathcal{H}_1 \otimes \mathcal{H}_2$.

- 17. A **representation** of a group is a mapping of the elements of \mathcal{G} onto a group of linear operators defined in a linear vector space, \mathcal{V} .
- 18. When it is possible to put a matrix representation of a group into block diagonal form, it is called a **reducible representation**. If the submatrices are not capable of being put themselves into further block diagonal form, they are the **irreducible representations**, IRR. There are as many IRR as there are classes for a group.

19. If two represenations of the same dimension are related by

$$\Gamma_{(i)}(g_k) = \mathbb{B}^{-1}\Gamma_{(j)}(g_k)\mathbb{B},$$

then $\Gamma_{(i)}$ and $\Gamma_{(j)}$ are equivalent. If no $\mathbb B$ exists, then the representations are inequivalent.