Problem Set \#2

PHY 853, Fall Semester, 1999
Chip Brock, brock@chip.pa.msu.edu
November 9, 1999

These problems are due on November 29, 1999 5:00 p.m. in my mailbox.
Problem 5 As was done in class, show that the two dimensional matrix representation for the c element of D_{3} is:

$$
\left(\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right)
$$

Problem 6 For D_{3}, show that $f(x, y)=x y$ is a basis function in the 2-dimensional representation.

Problem 7 Remember that the projection operator for an operation on a function F is,

$$
P^{(\ell)} F=\frac{d_{\ell}}{g} \sum_{\substack{k=\text { group } \\ \text { element }}}^{\text {order }} \chi^{*(\ell)}\left(\gamma_{k}\right) \Gamma\left(\gamma_{k}\right) F
$$

and the transformation operator is

$$
P_{j}^{(\ell) i} F=\frac{d_{\ell}}{g} \sum_{\substack{k=\text { group } \\ \text { element }}}^{\text {order }} \Gamma^{(\ell)}\left(\gamma_{k}\right)_{j}^{* i} \Gamma\left(\gamma_{k}\right) F
$$

(a) Show that the function $F=x^{2}$ decomposes into a function which transforms like the $\Gamma^{(1)}$ IRR of D_{3} and the two functions which transform among themselves as $\Gamma^{(2)}$ IRR of D_{3}. The former is the single function $\frac{1}{2}\left(x^{2}+y^{2}\right)$ and the latter functions are $x y$ and $\frac{1}{2}\left(x^{2}-y^{2}\right)$.
(b) Show, for the b element of D_{3}, that the latter two functions do indeed transform among themselves.

Problem 8 Refer to the covering group of a square which you worked out in the first problem set.
(a) What does the part of the character table look like for the 2-d represenation?
(b) From the consideration of the elements of the 2 d IRR on the function $x^{2}-y^{2}$, one can actually construct a 1 d representation. Do that.
(c) How many 1d IRR will there be? (Use the results of your last problem set.)
(d) Using the above plus Orthogonality, construct the complete character table for D_{4}.

Problem 9 The covering group for the NH_{3} molecule is the group $\mathrm{C}_{3 \mathrm{v}}$. The character table is:

$\mathrm{C}_{3 \mathrm{v}}$	E	$2 C_{3}$	$3 \sigma_{v}$	
A_{1}	1	1	1	$z ; x^{2}+y^{2} ; z^{2}$
E	2	-1	0	$x ; y ;\left(x^{2}-y^{2}\right) ; x y ; y z ; I_{x} ; I_{y}$
A_{2}	1	1	-1	I_{z}

Show that an electric dipole perturbation will result in transitions between the $E \rightarrow A_{1}$ and $E \rightarrow A_{2}$ levels.

Problem 10 In the Kronecker decomposition for $\operatorname{SU}(2)$, we have for the combination of three states:

$$
2 \otimes 2 \otimes 2=4 \oplus 2 \oplus 2
$$

For the quartet, find all four states in terms of the irreducible $\operatorname{SU}(2)$ tensors, $\xi^{i} \eta^{j} \gamma^{k}$.

Problem 11 Complete the formalism to show that that the algebra of $\mathrm{SU}(2)$ contains the term

$$
\left[X_{1}, X_{2}\right]=-2 X_{3} .
$$

Remember that the infinitesimal transformation on the vectors is

$$
\delta \xi^{i}=\eta_{j}^{i} \xi^{j}=U_{\sigma}^{i} \delta \alpha^{\sigma}
$$

that the infinitesimal transformation matrix is

$$
\eta=\left(\begin{array}{cc}
i \alpha^{1} & \alpha^{2}+i \alpha^{3} \\
-\alpha^{2}+i \alpha^{3} & -i \alpha^{1}
\end{array}\right)
$$

and that the generators are defined as

$$
X_{\sigma}=U_{\sigma}^{i} \frac{\partial}{\partial \xi^{i}}
$$

Problem 12 Show that the asymmetric (singlet) state

$$
\left|\eta_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|\frac{1}{2}\right\rangle_{1} \otimes\left|-\frac{1}{2}\right\rangle_{2}-\left|-\frac{1}{2}\right\rangle_{1} \otimes\left|\frac{1}{2}\right\rangle_{2}\right)
$$

is invariant under $\operatorname{SU}(2)$ rotations. Hint, remember that a rotation here implies

$$
\left|\eta_{0} \prime\right\rangle=\exp \left[\frac{i}{2} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\theta}\right] \exp \left[\frac{i}{2} \boldsymbol{\sigma}_{2} \cdot \boldsymbol{\theta}\right]\left|\eta_{0}\right\rangle,
$$

where the subscripts emphasize the fact that the operators seek out vectors in their own spaces.

