Physics 440

Quiz 10

17-Mar-2000

Name:

1. (2 pts) Find the leading term in the Fourier Series for the wave shown in the graph below.

Solution: Since the function is odd $(f(-t)=-f(t))$ only the sine series need be considered. Thus we need to find the term:

$$
\begin{aligned}
a_{1} & =\int_{-\pi}^{\pi} f(\theta) \frac{\sin (\theta)}{\sqrt{2}} d \theta \\
a_{1} & =\frac{1}{\sqrt{2}}\left\{\int_{-\pi}^{0}(-1) \sin (\theta) d \theta+\int_{0}^{\pi}(1) \sin (\theta) d \theta\right\} \\
& =\frac{1}{\sqrt{2}}\left\{\cos (\theta) l_{-\pi}^{0}-\left.\cos (\theta)\right|_{0} ^{\pi}\right\}=\frac{4}{\sqrt{2}}
\end{aligned}
$$

2. Explain how the circuit below works under various conditions of the inputs A and B. Logic level $1=-0.75 \mathrm{~V}$ and logic level $0=-1.55 \mathrm{~V}$.

Write down a truth table for this circuit.
Solution: With both A and B inputs at logic $0(-1.55 \mathrm{~V})$ neither transistor A nor B conducts. Transistor T_{1}, however is on. The drop across the 330Ω resistor is sufficient to bias T_{2} off which gives -5.2 volts or logic 0 for the output. If either A or B inputs are raised to -0.75 volts the transistor conducts adding more emitter current to the 1 $\mathrm{k} \Omega$ emitter resistor thus raising the common emitter point. This decreases the current in T_{1} and thereby raises its collector voltage. This makes T_{2} conduct making the output 0 V less the V_{CD} of T_{2}, which is small. The output is logic 1. Clearly, this is an OR circuit with truth table:

$\underline{\mathbf{A}}$	$\underline{\mathbf{B}}$	$\underline{\text { A OR B }}$
0	0	0
1	0	1
0	1	1
1	1	1

