Problem Set \#1

PHY 853, Fall Semester, 1999
Chip Brock, brockchip.pa.msu.edu

These problems are due on October 29, 1999, 5:00 p.m., in my mailbox.
October 11, 1999

These problems are due on October 30, 1999 in my mailbox.
Problem 1 Consider the continuous basis, $\xi_{\mathbf{r}_{0}}(\mathbf{r})=\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)$.
(a) While this function is not square-integrable, so it cannot be used to represent a physical system, it still is a valid basis and any valid function can be expanded in terms of it. What is the proper statement of that fact, in analogy to the discrete case: $\psi(\mathbf{r})=\left|\eta_{i}(\mathbf{r})\right\rangle a^{i}$?
(b) What ist he analogy for this continuous basis to teh discrete statment of orthogonality: $\left\langle\eta^{i} \mid \eta_{j}\right\rangle=\delta_{j}^{i}$?
(c) What is the analogy for this continuous basis to the discrete statement of closure, or the statement of a complete set of states:

$$
\left|\eta_{i}(\mathbf{r})\right\rangle\left\langle\eta^{i}\left(\mathbf{r}^{\prime}\right)\right|=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) ?
$$

Problem 2 Show that the momentum space representation of the positon operator is

$$
\langle p| \mathbb{X}\left|p^{\prime}\right\rangle=i \hbar \delta^{\prime}\left(p-p^{\prime}\right)
$$

Problem 3 Consider a $25 \%-75 \%$ mixture of two ensembles of particles with spin \mathbb{S}_{z+} and \mathbb{S}_{x+}, that is the normal probabilites are $\omega\left(\mathbb{S}_{z_{+}}\right)=0.25$ and $\omega\left(\mathbb{S}_{x+}\right)=$ 0.75 . What is the density operator, ρ ? Calculate the mean values of $\left\langle\mathbb{S}_{x}\right\rangle,\left\langle\mathbb{S}_{y}\right\rangle$, and $\left\langle\mathbb{S}_{z}\right\rangle$.

Problem 4 Consider the symmetry operations for the covering group of a square, D_{4}. The order of this group is 8 and consists of the following operations
(a) e : the identity
(b) $a, b, c, d: \mathrm{C}_{2}$ operations about the vertical, diagonal and horizontally oriented symmetric axes
(c) f, g, h : Counterclockwise rotations in the plane about an axis perpendicular to the surface of the triangle of $\pi / 2, \pi$, and $3 \pi / 2$ respectively

Figure 1: Definition of rotation and coordinate axes for the covering group of a square.

Refer to the system in Figure 1 at the top of the page. In order to help you organize your calculation, I've prepared worksheets for your evaluation of each element, first on the square, then transfering to a relabeling of the axes - you can print the blank ones out 8 times (if you really need help with the identity element!). The blanks are at square_sheet_1.pdf. I've also done the first element, a, as an example of how to use the sheets. It's at square_sheet_1_exA.pdf Have fun.
(a) Construct the multiplication table
(b) Work out the elements which are conjugate to b
(c) Separate the group into classes
(d) How many IRR will there be?
(e) Work out the 2-d matrix representation by considering the effects on the coordinate bases (e_{1} to the right from the center, e_{2} up from the center).

n matrix form:

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-x \\
y \\
-z
\end{array}\right]
$$

