# Problem Set \#1 

PHY 854, Spring Semester, 2000
Chip Brock, brock@chip.pa.msu.edu
February 22, 2000

These problems are due on March 3, 2000 5:00 p.m. to Lisa Ruess in Rm 207. Note, $\hbar=c=1$.

Problem 21 Start with the semi-classical Hamiltonian density for the Dirac field:

$$
H=\int d^{3} x \psi_{j}^{\dagger}(x)(-i \boldsymbol{\alpha} \cdot \nabla+\beta m)_{j k} \psi_{k}(x)
$$

and the Fourier expansion fof that field,

$$
\psi_{j}(x)=\sum_{i=1,2} \int d K\left[a^{(i)}(k) u_{j}^{(i)}(k) e^{-i k \cdot x}+b^{\dagger(i)}(k) v_{j}^{(i)}(k) e^{i k \cdot x}\right]
$$

where $d K \equiv \frac{d^{3} k}{(2 \pi)^{3} 2 \omega_{k}}$. Quantize the field and show that the Hamiltonian operator becomes

$$
H=\int d K \sum_{i=1,2} E\left[a^{\dagger(i)}(k) a^{(i)}(k)+b^{\dagger(i)}(k) b^{(i)}(k)\right] .
$$

Problem 22 (a) Show that $\frac{1}{2}\left(1 \pm \gamma_{5}\right)$ is a projection operator for right-handed (top sign) or left-handed (bottom sign) Dirac spinors.
(b) Define left-handed and right-handed components and show that the Lagrangian density for free spin $1 / 2$ fields

$$
\mathcal{L}(x)=\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)
$$

can be written
$\mathcal{L}(x)=\bar{\psi}_{L}(x) i \gamma^{\mu} \partial_{\mu} \psi_{L}(x)+\bar{\psi}_{R}(x) i \gamma^{\mu} \partial_{\mu} \psi_{R}(x)-m\left(\bar{\psi}_{R}(x) \psi_{L}(x)+\bar{\psi}_{L}(x) \psi_{R}(x)\right)$.
(c) Show that the Dirac Equation for $\psi(x)$ is retrieved using the Euler Lagrange equations.
(d) Show that one can retrieve the Dirac equation for $\bar{\psi}(x)$.

