Summary of wavefunctions and operators (Chap.
3)

1. The x-space wavefunction

For a free particle,
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Note that
pope = hke't®,

thus a harmonic wave has a definite wavelength, given
by

this is the de Broglie relation.
2. Expectation values

Define
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Reason: Because [1)(z,t)|? is the probability per unit

length, dP/dxz. Also note that this interpretation re-
quires the normalization condition [ |¢(z,t)|?dx = 1.

Similarly,
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3. The p-space wave function

We may write the plane wave expansion in the form
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where E = p?/2m. Then ¢(p) is called the momentum-
space wave function. By Fourier’s theorem,
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Expectation values involving p may be calculated from

o(p); e.g.,
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