PHY 471

Friday, Nov 16

Exam 3

1. A particle moves in 2 dimensions attracted to the origin by a linear force. The potential is shown in the Figure. The Hamiltonian is

$$H = \frac{1}{2m} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} m \omega^2 \left(x^2 + y^2 \right).$$

(a) Describe the energy eigenstates — eigenfunctions and eigenvalues. [Hint: Use separation of variables, u(x, y) = f(x)g(y).]

(b) For the 4 lowest energy levels, give the energy and degeneracy.

2. An electron moves freely in a spherical cavity of radius $a = 1 \text{ angstrom} = 1 \times 10^{-8} \text{ cm}$. ($V = \infty$ for r > a.) What is the energy if the electron is in the ground state? Give the answer in eV.

Useful: $j_0(\xi) = \frac{\sin \xi}{\xi}$

3. In copper, the density of conduction electrons is 8.5×10^{22} cm⁻³. The *Fermi temperature* T_F is defined by $kT_F = E_F$, where $E_F =$ Fermi energy. Calculate T_F .

4. Consider a particle that moves freely in a box with dimensions $\ell_1 \times \ell_2 \times \ell_3$. Compare the ground state energies for these dimensions:

(a)
$$(\ell_1, \ell_2, \ell_3) = (a, a, a)$$

(b)
$$(\ell_1, \ell_2, \ell_3) = (2a, a/2, a)$$

Information

electron mass = $0.511 \text{ MeV}/c^2 = 0.911 \times 10^{-27} \text{ g}$ $\hbar c = 2 \times 10^{-5} \text{ eV cm}$ $k = 1.38 \times 10^{-16} \text{ erg/K} = \text{Boltzmann constant}$ $\hbar = 1.055 \times 10^{-27} \text{ erg s}$ $1 \text{ eV} = 1.6 \times 10^{-12} \text{ erg}$