
PHY-851: QUANTUM MECHANICS I
Final Exam /Total: 40 points/

December 11, 2001

NAME....................................................

A. MULTIPLE CHOICE (encircle the correct answers) /12/.

1. Thermal neutrons (energy 0.025 eV) have their de Broglie wavelength
equal to

a. 2× 10−5 cm; b. 2× 10−8 cm; c. 2× 10−13 cm.

2. For two possible states of the same particle, ψ1(x) = exp(ikx− αx2) and
ψ2(x) = exp(ikx − 2αx2) where k and α are real constants, what is the
ratio 〈px〉1/〈px〉2 of the expectation values of the momentum:

a.
√

2; b. 1/
√

2; c. 2; d. 1/2; e. 1.

3. For a given barrier, the reflection coefficients at given energy are Rl for the
incident wave coming from the left and Rr for the incident wave coming
from the right, respectively. They satisfy the relation

a. Rl = Rr; b. Rl = −Rr; c. Rl +Rr = 1; d. R2
l +R2

r = 1.

4. For the solution of the time-dependent Schrödinger equation to be fully
determined, one needs to know the initial values of the

a. wave function;

b. its time derivative;

c. both.

PROBLEM B. /15/
A particle is placed in a potential well of finite depth U0. The width a of the well
is such that the particle has only one bound state with binding energy ε = U0/2.
Calculate the probability to find the particle in the classically forbidden region.

PROBLEM C. /13/
A particle of mass m is in a ground state of a one-dimensional potential U(x) =
(1/2)kx2. After a sudden capture of another particle, the mass changed m →
m′. What is the probability to find the new compound particle in an excited
oscillator state?
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SOLUTIONS

A. MULTIPLE CHOICE

1. b. Just because of the fact that the wavelength for thermal neutrons is
of the order of a typical lattice period in solid crystals, one can use such
neutrons for diffraction experiments in studies of crystal structure.

2. e. For a wave function in the form of ψ(x) = eikxf(x) with real k and
real square integrable f(x), the expectation value of the momentum is h̄k,
independently of the form of f(x). /To calculate the expectation value,
one has to normalize ψ(x)./

3. a. See Problem 4b, Homework 5.

4. a.

PROBLEM B. In the square well,

U(x) =
{

0, |x| > a/2,
−U0, |x| < a/2, (1)

the (unique) bound state is an even nodeless function of x,

ψ(x) = B cos(kx), k =

√
2m(U0 − ε)

h̄2 , |x| < a/2. (2)

Outside the well, |x| > a/2, the wave function decays exponentially,

ψ(x) = Ae±κx, κ =
√

2mε
h̄2 . (3)

In our conditions a great simplification comes from the fact that ε = U0/2,

k = κ =

√
mU0

h̄2 . (4)

Due to certain parity, the matching can be done at x = +a/2 only,

B cos(ka/2) = Ae−ka/2, −Bk sin(ka/2) = −kAe−ka/2. (5)

The ratio of these equations gives the relation between the parameters of the
problem

tan(ka/2) = 1 ; ka =
π

2
. (6)

The probability to be outside the well is

Pout = 2
∫ ∞

a/2

dxA2e−2kx =
A2

k
e−ka. (7)
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Because of eqs. (5) and (6), this is equal to

Pout =
B2

k
cos2(ka/2) =

B2

2k
. (8)

The probability to be inside the well is

Pin = 2
∫ a/2

0

dxB2 cos2(kx) =
B2

2k
[ka+ sin(ka)] =

B2

2k

(π
2

+ 1
)
. (9)

Thus, we have the relation
Pout

Pin
=

2
2 + π

; (10)

from Pout + Pin = 1 we come to

Pout =
2

4 + π
= 0.28. (11)

PROBLEM C. With the sudden perturbation, the wave function ψ0 of the
ground state of the Hamiltonian H does not have time to change but it is not
a stationary state of the new Hamiltonian H ′,

Ĥ =
p̂2

2m
+

1
2
kx̂2, Ĥ ′ =

p̂2

2m′
+

1
2
kx̂2. (12)

The wave function is now a linear combination

ψ0 =
∑

n

Cnψ
′
n,

∑
n

|Cn|2 = 1, (13)

of the eigenstates ψ′n of H ′, with the coefficients

Cn = 〈ψ′n|ψ0〉. (14)

The probability to find the particle in any of the excited states (n 6= 0) is

P =
∑
n 6=0

|Cn|2 = 1− |C0|2. (15)

Therefore it is sufficient to find the probability

P0 = |C0|2 (16)

of staying in the ground state after the perturbation. The overlap of the ground
states can be found, for example, with the use of the coordinate representation.
Taking into account that

mω = m

√
k

m
=
√
km, m′ω′ =

√
km′, (17)
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we find the corresponding ground state wave functions

ψ0(x) =
(km)1/8

(πh̄)1/4
e−(

√
km/2h̄)x2

, (18)

ψ′0(x) =
(km′)1/8

(πh̄)1/4
e−(

√
km′/2h̄)x2

, (19)

and their overlap

C0 =
∫
dxψ′0(x)ψ0(x) =

(mm′)1/8√
(
√
m+

√
m′)/2

, (20)

P0 =
(mm′)1/4

(
√
m+

√
m′)/2

, (21)

P = 1− (mm′)1/4

(
√
m+

√
m′)/2

. (22)

It is easy to show that always P > 0, as it should be.

4


