
SOLUTIONS

PROBLEM 1. The Hamiltonian of the particle in the gravitational field
can be written as

Ĥ =
p̂2

2m
+ U(x), U(x) =

{
∞, x ≤ 0,
mgx, x > 0. (1)

The simplest estimate comes from the uncertainty relation. If the ground state
localization length is ∼ l, the typical magnitude of the momentum is h̄/l, and
the expectation value of energy can be evaluated as

E(l) =
h̄2

2ml2
+mgl. (2)

This function has a minimum at

l =
(
h̄2

m2g

)1/3

. (3)

The corresponding energy equals

E =
3
2
(mg2h̄2)1/3. (4)

A Bohr-Sommerfeld quantization would give a similar result with a slightly
larger numerical coefficient, ≈ 1.8 instead of 1.5, in eq. (4). According to (3)
and (4), l ≈ (2/3)(E/mg), the particle is localized inside the well. The average
height (3) for the electron turns out to be ∼ 1 mm but it falls off for heavier
particles ∼ m−2/3.

PROBLEM 2. a. If the particle has a bound state with energy E = −ε < 0,
the wave function has to decay to the right of the well,

ψ(x) =
{
A sinh(κx), 0 ≤ x ≤ a,
Be−κx, a ≤ x <∞. (5)

Here the boundary condition at the infinite wall ψ(a) = 0 is taken into account,
and

κ =
√

2mε
h̄2 > 0. (6)

The matching conditions at the well are the continuity of the function,

A sinh(κa) = Be−κa, (7)

and the discontinuity of the derivative (dψ/dx) ≡ ψ′,

ψ′(a+ 0)− ψ′(a− 0) = −2m
h̄2 gψ(a) ≡ −tψ(a), (8)
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which gives
−κBe−κa − κA cosh(κa) = −tA sinh(κa). (9)

Eliminating B, we find the condition for κ which determines binding energy ε,

tanh(κa) =
κ

t− κ
. (10)

The zero value of κ is not a solution since it gives ψ ≡ 0. The left hand side of eq.
(10) as a function of κa starts at the origin with the slope 1 and asymptotically
approaches the value 1 at large κa. The right hand side, κa/(ta − κa), starts
at the origin with the slope 1/(ta), then asymptotically approaches the vertical
line κa = ta. In order to have a second intercept with the curve tanh(κa), the
slope should be smaller than 1. This gives the condition

1
ta
< 1, ;

2mga
h̄2

> 1. (11)

Under this condition we have one bound state; at ta < 1 the δ-well does not
support any bound state; the difference with the case of a single δ-well with
no wall comes from the boundary condition which forces the wave function to
vanish at x = 0; this confinement pushes the value of energy up.

b. In the scattering problem energy E is positive,

ψ(x) =
{

A sin(kx), 0 ≤ x ≤ a,
B sin(kx+ α), x ≥ a.

(12)

Here the wave vector is

k =

√
2mE
h̄2 > 0. (13)

The matching conditions are analogous to those in the previous version,

A sin(ka) = B sin(ka+ α), (14)

kB cos(ka+ α)− kA cos(ka) = −tA sin(ka). (15)

Earlier the similar set of equations was used to determine binding energy; here,
solving for the phase shift α(E), we obtain

tan(ka+ α) =
tan(ka)

1− (t/k) tan(ka)
, (16)

or

tanα =
(t/k)ξ2

1− (t/k)ξ + ξ2
. ξ = tan(ka). (17)

Let us look at particular cases. Since α enters the answer only in the form of
tanα, we can assume that α is defined in the interval from 0 to π. For ξ = 0,
ka = nπ, we have α = 0 or π; in this case, the wave traveling from the well to
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the wall and back acquires the phase 2ka = 2nπ and cannot be distinguished
from the wave propagating with no δ-well. For |ξ| → ∞, ka = [n+ (1/2)]π, we
find tanα = t/k, the phase falls off with energy, α ∝ 1/

√
E.

It is interesting to discuss the relation between the scattering problem and
bound states. In the scattering problem, the wave on the right from the potential
consists of the incident wave ∼ e−ikx and the reflected (scattered) wave ∼ eikx,

sin(kx+ α) =
1
2i

[
ei(kx+α) − e−i(kx+α)

]
. (18)

Here α is the function of physical positive energy E or wave vector k which takes
physically different values from 0 to π. Consider the analytic continuation of this
function to negative values of energy, or imaginary wave vector, k = iκ, κ > 0,

sin(kx+ α) ⇒ 1
2i

[
e−κx+iα(iκ) − eκx−iα(iκ)

]
. (19)

Now α becomes a complex function α(iκ). Assume that this function can go to
−i∞ at some value of κ. At this value of κ the second term in the square bracket
(19), representing now the part of the wave function increasing at x→∞, van-
ishes, and only the decaying part ∝ exp(−κx) survives; in this term, originated
from the reflected wave, the amplitude becomes infinitely large compared to
that in the incident wave. But then the analytically continued wave function
of the scattering problem coincides with that for a bound state. Indeed, let us
rename α(iκ) = −iβ(κ), where we are looking at the point κ where β(κ) →∞.
At this point tanα = −i tanh(β) → −i. On the other hand, if we extend our
definition of α in eq. (17) to complex values, it would give at this point

−i =
(t/iκ)(−1) tanh2(κa)

1− (t/iκ)i tanh(κa)− tanh2(κa)
. (20)

Using here the value
tanh(ka) =

κ

t− κ
(21)

which was obtained in eq. (10) for the bound state, we see that (20) is identically
fulfilled. This result is of a very general character: the bound states can be
related to the poles of the scattering matrix, in this case simply the amplitude
of the reflected wave, with the help of the analytical continuation to negative
energies or imaginary wave vectors.
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PHY-851 QUANTUM MECHANICS I
Homework 8, 30=10+20 points
October 31 - November 7, 2001

One-dimensional motion; variational method; periodic potential.

Reading: Merzbacher, Chapter 8, sections 1, 2, 7; Chapter 6, section 5.

1. /10/ Midterm, Problem 2. The potential consists of an infinitely high wall
at x = 0 and a narrow well −gδ(x− a); g and a are positive constants.

a. Find the bound states of the particle of mass m in this potential and
dependence of a number of such states on the parameters of the problem.

b. For the scattering problem with the same potential find the solution
that has the form sin(kx+α) at distances x > a and determine the phase
shift α as a function of energy.

c. Is it possible to find the bound states from the solution of the scatter-
ing problem? /Consider the analytic continuation of the scattering wave
function to complex values of the wave vector and assume that at some
complex value k = iκ the phase α(iκ) → −i∞./

Please write the solution of this problem separately from other
problems; this will be considered as make-up for the midterm.

2. /9/ Merzbacher, Exercises 8.1, 8.2, 8.3.

3. /5/ Merzbacher, Problem 5, p. 177.

4. /6/ Merzbacher, Exercise 8.29.
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SOLUTIONS

1. See Problem 2, Midterm.

2. Exercize 8.1. The Hamiltonian

Ĥ =
p̂2

2m
+ g|x| (22)

suggests that the ground state wave function should be even. Therefore
the exponential choice for the trial function decreasing to ±∞ is

ψ(x) =
√
α e−α|x|. (23)

The preexponential factor in this function is chosen in such a way that
the function is normalized, ∫ ∞

−∞
dxψ2(x) = 1. (24)

The expectation value of the potential energy for this function is easily
calculated,

〈U〉 = αg

∫ ∞

−∞
dx e−2α|x||x| = 2αg

∫ ∞

0

dx e−2αxx =
2αg
4α2

=
g

2α
. (25)

The kinetic energy must be treated carefully because of the singularity of
the trial wave function (23) at the origin. Indeed, this singularity brings
a sign function after the differentiation:

d

dx
e−α|x| = −α sign(x) e−α|x|, sign(x) =

x

|x|
, (26)

d2

dx2
e−α|x| = −α

{
2δ(x)− α[sign(x)]2

}
e−α|x|, (27)

where we need to take into account that

d

dx
sign(x) = 2δ(x), [sign(x)]2 = 1. (28)

Therefore

〈K〉 = − h̄2

2m

∫ ∞

−∞
dxψ(x)

d2

dx2
ψ(x) =

h̄2

2m
α2. (29)

The variational problem reduces to finding the minimum of the expecta-
tion value

〈H〉 =
h̄2

2m
α2 +

g

2α
(30)
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as a function of the variational parameter α. The function 〈H(α)〉 has a
parabolic minimum at

α =
(
gm

2h̄2

)1/3

. (31)

The ground state energy in this approximation is equal to

〈H〉 =
[

1
25/3

+
1

22/3

](
g2h̄2

m

)1/3

. (32)

This value differs from the result of the variational calculation with the
Gaussian function [Merzbacher, eqs. (8.12) and (8.15)] by the factor
(π/2)1/3 = 1.162. The result is worse just because of the singularity
of the exponential wave function at the origin. Here higher momentum
component emerge which are absent in the actual case; the Gaussian ap-
proximation is more smooth and has no discontinuities in derivatives.

We can note that the calculation of the kinetic contribution would be
simpler if we would use the Hermiticity of the momentum operator p̂ and
transform (29) to the equivalent form [compare Merzbacher, eq. (8.2)]

〈K〉 =
1

2m

∫ ∞

−∞
dx |p̂ψ(x)|2. (33)

This immediately gives

〈K〉 =
α

2m

∫ ∞

−∞
dx |ih̄αe−α|x|sign(x)|2 =

α

2m
h̄2α2

∫ ∞

−∞
dx e−2α|x| =

h̄2α2

2m
.

(34)

Exercise 8.2. We act as in the previous case. First we normalize the wave
function:

C2

∫ α

−α

dx (α− |x|)2 = 1 ; C =

√
3

2α3
. (35)

Using (33) we find

〈K〉 =
C2

2m

∫ α

−α

dx |−p̂|x||2 =
C2h̄2

m
α, (36)

and
〈U〉 = C2g

∫ α

−α

dx |x|(α− |x|)2 =
1
6
C2gα4. (37)

With the normalization (35), the function to minimize becomes

〈H〉 =
3h̄2

2mα2
+

1
4
gα. (38)
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The minimum corresponds to

α =
(

12
h̄2

mg

)1/3

, 〈H〉 =
5
4

(
3
2

)1/3 (
g2h̄2

m

)1/3

= 1.431
(
g2h̄2

m

)1/3

.

(39)
Thus, this trial function is worse than both Gaussian and exponential.
Here one still has a singularity of the derivative in the middle and the
wings of the function are cut off which means too strong localization,

Exercise 8.3. A possible choice of an even function could be for example

ψ(x) =
{
A(a2 − x2), |x| ≤ a,

0, |x| > a.
(40)

The normalization determines A =
√

15/(4a5/2). Then the expectation
value of the Hamiltonian is

〈H(α)〉 =
5h̄2

4ma2
+

5
16
ga. (41)

The minimization determines

a = 2
(
h̄2

mg

)1/3

(42)

and the corresponding expectation value of the ground state energy

〈H〉 =
15
16

(
g2h̄2

m

)1/3

= 0.9375
(
g2h̄2

m

)1/3

(43)

This result is better than the previous one because there is no singularity
in the middle but the discontinuities on the edges are still present.

For an odd function with one node, we can use

ψ(x) =
{
Ax(a2 − x2), |x| ≤ a,

0, |x| > a.
(44)

The standard calculation gives

〈H〉 = 2.1966
(
g2h̄2

m

)1/3

. (45)

The exact value for the first excited state is, in the same units, 1.8588.
Again the Gaussian approximation would be better.

The procedure can be continued with the choice of new trial functions
orthogonal to all previous ones; a number of nodes increases each time.
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3. First we normalize the wave function, compare (35),

C2 =
3
2a
. (46)

Similarly to (36),

〈K〉 = C2 h̄
2

ma
=

3h̄2

2ma2
; (47)

the potential contribution is

〈U〉 = C2 1
2
mω2

∫ a

−a

dxx2

(
1− |x|

a

)2

= C2 1
30
mω2a3 =

1
20
mω2a2.

(48)
The minimization of full energy gives

a2 =
√

30
h̄

mω
, 〈H〉 =

h̄ω

2
6√
30

= 1.095
h̄ω

2
. (49)

4. Consider, for example, the case of E > 0. The equation for allowed
energies E = E(k) reads, in notations used in class,

cos(kl) = cos(qa) cos(q′b)− q2 + q′2

2qq′
sin(qa) sin(q′b), (50)

where

q =

√
2mE
h̄2 , q′ =

√
2m(E − U0)

h̄2 , (51)

the bottom of the well is put at E = 0, the height of the barrier is U0, and
their widths are a and b, respectively (a+ b = l). The quasimomentum k
labeling the stationary state changes between −π/l and π/l. The limiting
transition to the sequence of δ-functions, the Kronig-Penney model, goes
as

U0 →∞, b→ 0, U0b→ const = g, a→ l, q′2 → −2mU0

h̄2 . (52)

When U0 → ∞, we can neglect q2 compared to q′2. The argument q′b is
small in this limit, ∼ g/

√
U0. Thus we have cos(q′b) → 0, sin(q′b) → q′b,

and the main equation (50) takes the form

cos(kl) = cos(ql) +
t

q
sin(ql), t =

mg

h̄2 . (53)

Recall that here q characterizes energy while k is a label (quantum num-
ber) of the wave function. The allowed and forbidden energy bands E(k)
follow from the fact that the left hand side is bounded by | cos(kl)| ≤ 1.
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Without any potential t → 0, and we have free motion, which allows to
identify q and k.

There are various ways to analyze the result (53). We can introduce an
angle ϕ = tan−1(t/q) so that

tanϕ =
t

q
, sinϕ =

t√
t2 + q2

, cosϕ =
q√

t2 + q2
. (54)

Then

cos(ql) +
t

q
sin(kl) = cos(ql) + tanϕ sin(ql) =

cos(ql − ϕ)
cosϕ

(55)

and we find from eq. (53):

cos(kl) =
cos(ql − ϕ)

cosϕ
. (56)

The boundaries of the energy bands, cos(kl) = (−)n, are determined by

cos(ql − ϕ) = (−)n cos(ϕ), (57)

where an integer n labels the bands. The solutions of (57) are

ql = nπ or ql = nπ + 2ϕ; (58)

Forbidden bands are located between these values for any n. The width
of the nth forbidden band is determined by 2ϕ = 2 tan−1(t/q). At high
energies, q � t, this gives ϕ ≈ t/q � 1. In this case the forbidden zone is
very narrow and located, according to (58), around ql = nπ. This means
that the width of narrow bands, n� 1, can be estimated as

∆n(ql) = 2ϕ ≈ 2
tl

nπ
, (59)

or, in energy units, see (51),

∆n(E)
E

=

√
2h̄2

mE

2t
nπ

. (60)
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