
PRACTICE PROBLEMS

1. An electron beam forms a diffraction pattern in the two slit experiment.
Does each single electron create the same pattern?

2. A particle beam prepared with the initial coordinate spread ∆x(0) under-
goes further quantum spreading during time t. How does its final spread
∆x(t) depend on the dispersion law (expression of energy ε(p) as a function
of momentum)?

3. A charged quantum particle is moving in the uniform electric field. The
expectation value of its radius vector is 〈r(t)〉. Does this function coincide
with the classical trajectory r(t) in the same field?

4. Let En be the energy of the n-th level. What is the n-dependence of En

for n� 1 in

a. harmonic oscillator field;

b. square well with infinitely high walls;

c. potential U(x) ∝ x4?

5. According to Ritz’s empirical combination rule, all inverse wavelengths
of radiation 1/λ observed in the spectrum of the hydrogen atom can be
presented as proportional to the differences of two ”spectral terms” 1/n2

and 1/n′2 with integer n and n′,

1
λ

= RH

(
1
n′2

− 1
n2

)
, (1)

and the Rydberg constant RH = 109678 cm−1. Explain this result by
quantum mechanics.

6. An excited hydrogen atom sequentially emits two photons with the wave-
lengths 6563 Å and 1216 Å. Determine the main quantum numbers and
binding energies of the initial, intermediate and final states.

7. A hydrogen atom, initially in the 2p state, emits a photon. Calculate the
velocity of the recoil atom.

8. In classical electrodynamics, an electron bound in the hydrogen atom has
to radiate electromagnetic waves with radiation frequencies being mul-
tiples of the electron revolution frequency. Show that the predictions of
quantum and classical mechanics agree for the electron transitions between
the levels with large quantum numbers n′, n� 1 if ∆n = |n− n′| � n, n′

(”correspondence principle”). /For simplicity consider circular classical
orbits/.
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9. Calculate the shift of the ground state energy for the electron in the atoms
of heavy hydrogen isotopes deuterium and tritium compared to the normal
hydrogen atom.

10. Calculate the radiation wavelength for the electron transition from the first
excited state to the ground state in hydrogen, deuterium and positronium
atoms (positronium is the hydrogen-like e−e+ state).

11. For the hydrogen-like ions He+ and Li++ calculate
a. the radius of the lowest Bohr orbit;
b. the ionization potential for the ground state;
c. the first excitation potential and the wavelength of the corresponding
radiation.

12. A particle of mass m is moving in a one-dimensional potential U(x) which
is negative for all x and U(x) → 0 at x → ±∞. Does it always support
at least one bound state? In the case it does, give a rough estimate of the
spatial localization length of this state in terms of the characteristic depth
U0 and width a of the potential.

13. For an arbitrary linear operator F̂ determine if the following operators are
Hermitian:

a)F̂ †F̂ ; b)F̂ F̂ †; c)F̂ − F̂ †; d)F̂ + F̂ †.

When the operator F̂ 2 is Hermitian?

14. The coordinate kernel F (x, x′) of an operator F̂ have the form

a)f(x+ x′); b)f(x− x′); c)f(x)g(x′).

What are the constraints for these functions if F̂ is Hermitian?

15. Operators Â and B̂ are constants of motion. Is their commutator a con-
stant of motion?

16. Calculate the commutation relations [l̂j , r̂k], [l̂j , p̂k] and [l̂j , l̂k] where l̂ =
[r̂ × p̂]/h̄ is the angular momentum operator in units of h̄ and j, k are
Cartesian coordinates (x, y, z) of vector operators.

17. Does the operator L̂2
z, z-component of the orbital momentum squared,

commute with

a) p̂x; b) p̂2
x; c) p̂2

x + p̂2
y; d) p̂2

x − p̂2
y,

where p̂ is the momentum of a particle?

18. Find the uncertainty relation for the operators of coordinate x̂ and an
arbitrary smooth function of momentum f(p̂).
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19. An operator Â satisfies Â4 = 1. Find its eigenvalues if it is Hermitian and
if it is not restricted to being Hermitian.

20. Two operators Â and B̂ anticommute, ÂB̂+B̂Â = 0. Can they simultane-
ously have certain values? Give an example of anticommuting operators.

21. Write down the eigenfunction of the position vector r̂ corresponding to
the eigenvalue r0 in the coordinate and momentum representations.

22. Write down the eigenfunction of the momentum operator p̂ corresponding
to the eigenvalue p0 in the coordinate and momentum representations.

23. Can a unitary operator Û be at the same time a projection operator?

24. The coordinate wave function of a particle is

ψ(x) = Ce(i/h̄)qxu(x),

where C is a constant, and u(x) is a real square integrable function. Find
the expectation value of the momentum in this state.

25. Two pieces of metal are placed close to each other so that the tails of the
electron wave functions overlap. Assuming that these wave functions are

ψ1(x) = A1(x) exp(iφ1) and ψ2(x) = A2(x) exp(iφ2),

where A1,2(x) are real functions, φ1 and φ2 are constant but different
phases, find the probability current through the interface.

26. Consider the Schrödinger equation where the potential is given by a com-
plex function with the real part V and imaginary part W , the so-called
optical potential U(r) = V (r) + iW (r). Derive the continuity equation
and interpret the results in relation to the sign of W .

27. For two particles of mass m1 and m2 introduce, instead of their position
vectors r1 and r2, their relative distance r and the center-of-mass coor-
dinate R. Find the corresponding momenta vectors p and P, check the
commutation relations of the components of r and R with p and P.

28. A wave function of a particle of mass m in an infinitely deep potential box
of size a is ψ(x) = A sin2(πx/a). Find the distribution of probabilities of
various values of particle energy, mean energy and the variance.

29. Find an approximate value of the ground state energy of the harmonic
oscillator using the variational method with the trial function ψ(x) =
C(1+x2/a2)−s where s = 1 or s = 2. Compare the results with the exact
value. What value of s would give the best result?
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30. Consider a particle of mass m in a potential bounded on the left by the
infinitely high wall at x = 0, equal to U(x) = −U0, U0 > 0, for x < a,
and U(x) = 0 for x > a. Find the interval of values U0 where the well
supports two bound states.

31. An electron is trapped in the potential well of depth U0 and size R = 10 Å
where it has only one bound state with the binding energy equal to U0/2.
Calculate the value of U0, the probability density |ψ|2 for the electron,
find the coordinate of the maximum probability and draw qualitatively
the function ψ(x),

32. Estimate the probability for the proton and the neutron in the deuteron
to be outside the region r < R of nuclear attraction.

33. For the potential that consists of the infinitely high wall at x = 0 and the
narrow well −gδ(x−a) with positive constants g and a, use the variational
method with trial functions ψ(x) = Ax exp(−βxs), s = 1 and s = 2, to
find the conditions for the parameters (m, g, a), for which the bound state
in this potential does exist. Compare with the exact solution.

34. Solve the Schrödinger equation for a slow particle reflected from the re-
pulsive barrier (the potential is infinite for x < 0, equal to U0 > 0 for
0 < x < a and zero outside this barrier); consider the cases when en-
ergy 0 < E < U0 or E > 0. Find the phase shift of the reflected wave.
Consider the limiting transition to the infinitely high U0. Consider the
limiting cases of low and high energies (long and short wavelength limits
with respect to the barrier size a).

35. Find the transmission coefficient for the rectangular potential, U(x) = 0
for x < a and x > b > a, U(x) = U0 for a < x < b. Consider U0 < 0 and
U0 > 0. Discuss particular cases

a) E � U0 > 0; b) E → 0.

Consider the limiting transition to the δ-potential.

36. Which of the following quantities: energy E, components of the momen-
tum p, components of the orbital momentum l, its square l2, parity P,
are conserved when a particle is moving
a. with no external fields (free motion);
b. in the static uniform field along the z direction;
c. in the static central field U(r);
d. in the field U = f(ρ) where ρ is the radius in the xy-plane;
e. in the uniform field along the x-direction with the time-dependent
amplitude?
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37. A particle in the infinitely deep potential box of width a has an initial
wave function Ψ(x, t = 0) = A sin3(πx/a). Find the wave function at
arbitrary time t > 0. Does the particle return to the initial state at some
time T?

38. Find the Green function G(p, t;p′, t′) in the momentum representation for
a free particle.

39. A nucleus of atomic number A consists of Z protons and N = A−Z neu-
trons. Assuming velocity-independent nucleon-nucleon forces, establish
the energy weighted dipole sum rule.

40. For a system of N identical particles of mass m define the density operator

ρ̂(r) =
N∑

a=1

δ(r− r̂a).

Find the density fluctuation operator ρ̂k as the Fourier-component of ρ̂(r)
for the wave vector k. Assuming velocity-independent forces between the
particles, establish the energy weighted dipole sum rule for the operator
ρ̂k.

41. Find the uncertainty relation between the Heisenberg position operators
at t = 0, x̂(0), and at arbitrary t > 0, x̂(t), for a harmonic oscillator.

42. The spatial inversion operator P transforms x → −x and p → −p. Find
the expression of P in terms of creation and annihilation operators.

43. For a coherent state |α〉 of the harmonic oscillator, find
a. the coordinate wave function;
b. uncertainty of the number of quanta;
c. product of uncertainties (∆x)(∆p).

44. Using the properties of creation and annihilation operators, find the eigen-
functions of the harmonic oscillator ψn(x) with n = 1 and n = 2 in the
coordinate representation.

45. Calculate matrix elements 〈n′|xs|n〉 where s = 3 and s = 4; n and n′ label
the stationary states of the harmonic oscillator.

46. A particle with mass m and electric charge e is moving in the harmonic
oscillator potential of frequency ω and static uniform electric field E ap-
plied along the axis x. Find
a. the energy spectrum En of stationary states |n; E〉;
b. the induced dipole moment dn;
c. the polarizability (∂dn/∂E);
d. the operator which transforms the states |n; 0〉 with no field into the
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states |n; E〉 in the presence of the field.
e. Show that the ground state |0; E〉 is a coherent state, find the corre-
sponding parameter α and the average number of quanta (defined with
respect to the case with no field) in this state.

47. A particle of mass m is placed in the ground state in the field of the elastic
force −kx. At the initial moment the restoring force is suddenly changes,
k → k′. What is the probability for the particle to remain in the ground
state of the new potential?

48. For a particle in the uniform magnetic field B = Bz show that the opera-
tors

ξ̂ = x̂+
v̂y

ωc
, and η̂ = ŷ − v̂x

ωc

are constants of motion. What is the physical meaning of these quanti-
ties? Can they simultaneously have certain values? Find the spectrum of
eigenvalues of the operator ρ̂2 = ξ̂2 + η̂2. What operator is the analog of
the cyclotron radius of the orbit?

49. A particle of mass m is moving in the crossed uniform time-independent
fields, magnetic B = Bz and electric E = Ex. Find the energy spectrum
of the stationary states.

50. A particle is moving in the uniform magnetic field B = Bz and one-
dimensional oscillator field U(x) = (1/2)mω2x2. Find the energy spec-
trum of the stationary states. Are the levels degenerate?

51. Find an acceleration operator for a particle in an arbitrary static electro-
magnetic field E(r),B(r).
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