1. /7/ Merzbacher, Problem 3, p. 90.

2. /13/ Merzbacher, Problem 6, p. 91.

3. /6/ A particle of mass \(m \) and electric charge \(e \) is placed in the one-dimensional harmonic oscillator potential of frequency \(\omega \) and the uniform electric field \(E \) along the same axis.
 a. Find the wave functions and the energy spectrum of the particle.
 b. With a particle in the ground state of the problem, at time \(t = 0 \) the electric field is suddenly switched off. Find the probability of finding the particle at \(t > 0 \) in the \(n \)th stationary state of the oscillator.
 c. The ground state in the presence of the electric field acquires the nonzero expectation value of the electric dipole moment \(\langle \hat{d} \rangle \) proportional to the applied field \(E \). Find the coefficient of proportionality (static polarizability).

4. /15/ Any linear operator \(\hat{F} \) in the coordinate representation can be defined as an integral operator acting on an arbitrary function \(\psi(x) \) according to

\[
\hat{F}\psi(x) = \int dx' F(x, x')\psi(x'),
\]

where the function \(F(x, x') \) is called the kernel of the operator.
 a. Construct kernels \(F(x, x') \) corresponding to the operators \(\hat{x}, \hat{p}, \hat{P}, \hat{D}(a) \) and scale transformation \(\hat{M}(\alpha) \); the last three operators are defined in Problem 3, Homework 4.
 b. Find the most general form of the kernel \(F(x, x') \) for an operator \(\hat{F} \) which commutes with the coordinate operator \(\hat{x} \).
 c. Find the most general form of the kernel \(F(x, x') \) for an operator \(\hat{F} \) which commutes with the momentum operator \(\hat{p} \).
 d. Find the most general form of the kernel \(F(x, x') \) for an operator \(\hat{F} \) which commutes with \(\hat{x} \) and \(\hat{p} \).
 e. Consider an operator \(\hat{F} \) with the factorized kernel, \(F(x, x') = f(x)g(x') \). At what condition the operator \(\hat{F} \) is Hermitian? For a Hermitian operator of this type find its eigenfunctions and eigenvalues. Find the degeneracies of the eigenvalues (their multiplicities in the spectrum).
5. /9/ a. Let all eigenvalues of a Hermitian operator \(\hat{F} \) in \(N \)-dimensional Hilbert space be different. Show that the \(N^{th} \) power, \(\hat{F}^N \), of this operator can be expressed as a linear combination of the lower powers

\[\hat{F}^{N-1}, \hat{F}^{N-2}, \ldots, \hat{F}, 1. \]

As an example of the general result consider the inversion operator \(\hat{P} \).

b. Let \(\{f_i\}, i = 1, \ldots, N \), be the set of the eigenvalues of the same operator \(\hat{F} \). Construct the projection operator \(\hat{\Lambda}_i \) which projects out the state \(|i\rangle \) with the value \(f_i \) of \(\hat{F} \).

c. Show that the operator \(\hat{F} \) with the factorized kernel, Problem 3, e, can be transformed into a projection operator \(\hat{\Lambda} = c\hat{F} \) with multiplication by a certain constant \(c \). Which state is projected out by the operator \(\hat{\Lambda} \)?

f. A particle is moving in the external, nonlocal but Hermitian, potential field \(\hat{U} \) which is defined by the kernel \(U(r, r') \). Is the continuity equation valid in this case? Is the normalization of the wave function conserved in time?