
SOLUTIONS for Homework #1

1. The photon energy for a given wave length λ equals

Eγ = h̄ω =
2πh̄c

λ
≈ 60 keV, (1)

where it is useful to memorize a simple numerical relation

h̄c = 197 MeV · fm ≈ 2× 10−5 eV · cm. (2)

Standard conservation laws for the Compton effect determine the energy
transferred from the photon to the electron originally at rest,

∆E =
Eγ

1 + 2(Eγ/mc2) sin2(ϑ/2)
≈ 51 keV, (3)

where m is the electron mass, mc2 =511 keV, and ϑ is the photon scat-
tering angle. The binding (ionization) energy of the lowest, the so-called
K-, shell in the Mo atom, Z = 42, can be roughly estimated as

Eb = 1Ry × Z2 ≈ 24 keV. (4)

Then eq. (3) determines the value of final kinetic energy of the electron,

Ekin = ∆E − Eb ≈ 27 keV. (5)

/A precise result is 31 keV since the empirical value of the wave length
λK for the K-edge of the absorption of X-rays for Mo is λK = 0.619 Å
that corresponds to the ionization energy of 20 keV, rather than 24 keV
of our estimate in eq. (4)./

2. From the de Broglie wave length λ = h/p we obtain

v =
2πh̄

mλ
; (6)

this gives 2.5×10−12c = 7.5×10−2 cm/sec for the electron and 4×10−5 cm/sec
for the neutron. Modern experimental techniques allows one to perform
experiments with atomic waves. But for macroscopic bodies the quan-
tum wave lengths are extremely small: for a human being of weight 50 kg
moving with the speed of 1 cm/sec we obtain λ ∼ 10−31 cm, i.e. quantum
effects in the translational motion are invisible.

3. Average energy of an atom at this temperature, according to the classical
Maxwell distribution, is (3/2)T where temperature is expressed in ener-
getic units (1 eV = 11600K). From here we obtain the average velocity,
v/c ≈ 2× 10−11, and the de Broglie wave length λ ≈ 6× 10−5 cm. If this
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wave length is comparable to the size r0 of a small cube accomodating just
one atom, then the density of the gas is n ≈ r−3

0 ≈ 0.5×10−12 cm−3. This
is a typical atomic density in the traps used for studies of the Bose-Einstein
condensate. /This estimate gives only the conditions for the transition
from the Maxwell distribution to the Bose-Einstein distribution. At very
small temperature, all atoms occupy the ground state available in the trap
so that our initial estimate for atomic energy becomes invalid, and typical
atomic velocities are determined by the size of the trap in accordance with
the uncertainty relation./

4. The potential energy of an electron in the field of the screened center is

U(r) = −Ze2

r
e−κr. (7)

Consider a circular electron orbit of radius r and speed v. The equilibrium
condition for this orbit reads

mv2

r
=

Ze2κ

r

(
1 +

1
κr

)
e−κr, (8)

or, applying the quantization rule

L2 = (mvr)2 = n2h̄2, (9)

we find

Ze2mκ

(
1 +

1
κr

)
r2e−κr = n2h̄2. (10)

The left hand side of eq. (10) exponentially falls off for large distances,
κr � 1. Therefore there is no solutions for large values of n, and the
number of bound states should be finite. The maximum allowed radius
can be found from the maximum of the left hand side, which is given by
the positive root of the equation

r2 − r

κ
− 1

κ2
= 0 ; r =

1 +
√

5
2κ

. (11)

Of course, one could guess with no calculations that the maximum radius
of the orbit should be of the order rD = 1/κ. The maximum quantum
number, corresponding to the number of levels supported by the screened
potential, is now determined from

n2
max =

(3 +
√

5)(1 +
√

5)
4

e−(1+
√

5)/2 mZe2

κh̄2 ≈ 0.84
rD

aB
Z, (12)

where aB/Z = h̄2/(me2Z) is the Bohr radius of the lowest bound orbit in
the pure Coulomb potential of the charge Z. Although the semiclassical
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Bohr-Sommerfeld quantization usually is not accurate for the lowest orbit,
nevertheless we get a reasonable estimate that for a very low value of the
Debye radius, rD < aB/Z the screened potential does not support bound
states at all, nmax < 1.

The Yukawa-type potential arises in many problems of elementary particle
physics when the interaction between two objects of mass M is mediated
by the exchange of a meson (intermediate particle) of mass µ; the attrac-
tive exchange potential in this case can be written (we will come to this
later studying relativistic quantum mechanics) as

U(r) = −f2

r
e−(µc/h̄)r. (13)

Here the squared coupling constant f2 has a dimension [energy×distance],
and the role of the Debye radius is played by the Compton wave length
h̄/µc of the meson. The meson exchange, according to the previous re-
sults, does not create a bound state of two particles, if the attraction is
too weak, (f2/h̄c) < 1.19(µ/m), where m = M/2 is the reduced mass
of the interacting particles. This result is quite close to the exact one,
f2

crit/(h̄c) = 0.84(µ/m) that can be obtained with the aid of a numerical
solution of the Schrödinger equation for the Yukawa potential.

5. The relevant transition in the Balmer series of the He+ ion (Z=2) is be-
tween n = 3 and n′ = 2 levels. In the units of 2πh̄cRH , where RH

is the Rydberg constant for the hydrogen atom, the transition energy
is proportional to [(1/4) − (1/9)]Z2 = 5/9. Meanwhile, the excitation
of the hydrogen atom in the lowest excited state (“Lyman-α” transition
n′ = 1 → n = 2) requires, in the same units, a larger amount of energy
1-(1/4)=(3/4). This is possible only at the expense of the kinetic energy
of relative motion. The ratio of the required frequency ω′ to the natural
frequency ω which would be emitted by the ion at rest should be

ω′

ω
=

3/4
5/9

=
27
20

. (14)

The transformation of frequencies for the moving ion is given by the
Doppler shift for relative velocity v,

ω′

ω
=

√
1 + β

1− β
, β =

v

c
. (15)

We determine the velocity necessary for the resonance between the emitted
and absorbed wave lengths from eqs. (14) and (15):

β =
ω′2 − ω2

ω′2 + ω2
=

329
1129

; v = 0.29 c. (16)
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