
SOLUTIONS

1. In Problem 1, Homework 9, we have calculated the matrix elements of the
operator x̂2 for the harmonic oscillator, eqs. (??, ??) and (??). They have
selection rules ∆n = 0,±2. Using the matrix multiplication x̂4 = x̂2 · x̂2,
we can write

〈n|x̂4|n〉 =
∑
n′

〈n|x̂2|n′〉〈n′|x̂2|n〉. (1)

Now the selection rules show that only three terms in this sum remain:

(x4)nn = (x2)2nn + (x2)n,n−2(x2)n−2,n + (x2)n,n+2(x2)n+2,n, (2)

or, taking into account the Hermiticity of x̂2,

(x4)nn = (x2)2nn + (x2)2n,n−2 + (x2)2n,n+2. (3)

With the explicit values of the matrix elements of x̂2, we find

(x4)nn =
(

h̄

mω

)2
[(

n+
1
2

)2

+
1
4
n(n− 1) +

1
4

(n+ 1)(n+ 2)

]

=
(

h̄

mω

)2 3
4
(2n2 + 2n+ 1). (4)

2. a. The given function Ψ(x, 0) is the result of the displacement of the
ground state wave function ψ0(x),

Ψ(x, 0) = D̂(a)ψ0(x) = ψ0(x− a). (5)

It is a superposition of all stationary states of the unperturbed oscillator,

Ψ(x, 0) =
∞∑

n=0

Cnψn(x), (6)

where the amplitudes Cn are matrix elements of the shift operator,

Cn =
∫
dxψn(x)D̂(a)ψ0(x) ≡ 〈n|D̂(a)|0〉. (7)

There are various ways to evaluate these amplitudes. We can use the
explicit form of the harmonic oscillator eigenfunctions

ψn(x) =
1√
2nn!

(mω
πh̄

)1/4

e−(mω/2h̄)x2
Hn

(√
mω

h̄
x

)
. (8)

With the dimensionless variables

ξ =
√
mω

h̄
x, b =

√
mω

h̄
a, (9)
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we write the amplitudes (7) as

Cn =
1√
π2nn!

e−b2/2

∫
dξ Hn(ξ)e−ξ2+bξ. (10)

Since the Hermite polynomials are

Hn(ξ) = (−)neξ2 dn

dξn
e−ξ2

, (11)

we integrate by parts n times in (10):

Cn =
1√
π2nn!

e−b2/2

∫
dξ ebξ(−)n dn

dξn
e−ξ2

=
1√
π2nn!

e−b2/2bn
∫
dξ e−ξ2+bξ.

(12)
The last Gaussian integral is easily evaluated by forming the complete
square in the exponent which leads to the final result

Cn =
1√
2nn!

bne−b2/4. (13)

The probability of finding the nth stationary state is given by

Pn = C2
n =

1
2nn!

b2ne−b2/2. (14)

The probabilities are normalized correctly:

∞∑
n=0

Pn = e−b2/2
∑

n

(
b2

2

)n 1
n!

= 1. (15)

The average degree of excitation of the original oscillator is the mean
number of excited quanta

〈n〉 =
∑

n

nPn =
b2

2
, (16)

and we came to the Poisson distribution

Pn =
〈n〉ne−〈n〉

n!
. (17)

b. For a < (h̄/mω)1/2, b < 1, and 〈n〉 < 1, the probabilities Pn rapidly
fall off as n increases. For b = 1, we have

P0 = 0.6065, P1 = 0.3033, P2 = 0.0758, P3 = 0.0126.
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The variance (∆n)2 of the Poisson distribution is equal to the mean value,

(∆n)2 = 〈n2〉 − 〈n〉2 = 〈n〉, (18)

and grows with 〈n〉. For large values of 〈n〉, the Poisson distribution is
close to Gaussian with the width (18). For example, for b = 4, 〈n〉 = 8,

P0 = 0.0003, P1 = 0.0027, P2 = 0.0107, P3 = 0.0286,

P4 = 0.0572, P5 = 0.0916, P6 = 0.1221, P7 = 0.1396,

P8 = 0.1396, P9 = 0.1241, P10 = 0.0993, P11 = 0.0722,

P12 = 0.0481, P13 = 0.0296, P14 = 0.0169, P15 = 0.0090,

P16 = 0.0045, P17 = 0.0021, P18 = 0.0009, P19 = 0.0004.

c. Every stationary component |n〉 of the initial wave packet (6) evolves
in time with its own frequency

En

h̄
= ω

(
n+

1
2

)
. (19)

At an arbitrary time moment t,

Ψ(x, t) =
∞∑

n=0

Cne
−(i/h̄)Entψn(x), (20)

where the amplitudes Cn are already determined, eq. (13), by the initial
wave function. The addition of the time-dependent factor in (20) is equiv-
alent to changing the real amplitudes Cn by the new complex amplitudes

Cn(t) = Cne
−iω(n+1/2)t. (21)

The factor exp(−iωnt) can be combined with bn to form the time depen-
dent displacement parameter

b(t) = be−iωt. (22)

Extracting the factor in front, the new amplitudes can be rewritten as

Cn(t) = f(t)Cn(b(t)), f(t) = e−i(b2/2) sin(ωt) exp(−iωt), (23)

where Cn(b(t)) is the old amplitude Cn(b), eq. (13), with the time-
dependent argument (22). Now it is clear that the time-dependent wave
function is again the Gaussian packet centered around the complex point
a(t) =

√
h̄/mωb(t),

Ψ(x, t) = f(t)ψ0(x− a(t)). (24)
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This means that the center of the packet is rotating in the complex plane
with the oscillator frequency.

d. Now it is a straightforward exercise to calculate

|f(t)|2 = e−(mω/h̄)a2 sin2(ωt), (25)

and

|Ψ(x, t)|2 =
(mω
πh̄

)1/2

e−(mω/h̄)[x−a cos(ωt)]2 . (26)

This can be written in a more clear way,

|Ψ(x, t)|2 = |Ψ0(x− a cos(ωt))|2. (27)

The center of the probability cloud is performing the harmonic oscillation
on the real axis. This is one of the examples of the coherent state.

3. a. The Hamiltonian of the particle is

H =
p̂2

2m
+

1
2
mω2x̂2 − eE x̂. (28)

By consructing the complete square we rewrite this as

H =
p̂2

2m
+

1
2
mω2

(
x̂− eE

mω2

)2

− e2E2

2mω2
. (29)

With a new variable
y = x− a, a =

eE
mω2

, (30)

we obtain a standard harmonic oscillator problem, with the overall shift of
energies by the last term in (29). Thus, the eigenfunctions of the problem
with the field E are shifted usual functions,

ψn(x; E) = D̂(a)ψn(x; 0) = ψn(x− a; 0). (31)

This shift of the equlibrium position of a charged pendulum along the field
has an obvious classical meaning. The energy spectrum is given by

En(E) = h̄ω

(
n+

1
2

)
− e2E2

2mω2
≡ En(0)−∆E. (32)

All levels are shifted down as a whole (a result of the dipole polariza-
tion, see point c); the step of the ladder (the quantum of the oscillation
frequency) is unchanged.

b. The Problem 2 answers this question. The wave function ψ0(x; E) is
now an initial state; the shift a is determined by (30). The probability
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distribution for the stationary states |n〉 of the oscillator centered at an
unperturbed position x = 0 is Poissonian, eq. (17), with the mean value
of excited quanta

〈n〉 =
mωa2

2h̄
=

e2E2

2mh̄ω3
. (33)

This quantity has a simple meaning: the system now has energy higher
than in the presence of the field by the amount of the shift ∆E, eq. (32).
This amount is transformed in the average excitation,

∆E = h̄ω〈n〉. (34)

c. With no field, there is no dipole moment (stationary states have certain
parity). The induced dipole moment for the ground state in the presence
of the field is given by the expectation value of the dipole operator d̂ = ex̂,

〈d̂〉 = e

∫ ∞

−∞
dxx|ψ0(x; E)|2 = e

∫ ∞

−∞
dxx|ψ0(x− a; 0)|2 = ea =

e2

mω2
E .

(35)
Thus, the static polarizability of the harmonic oscillator is equal to

α =
e2

mω2
. (36)

4. a. To find the corresponding integral operator we start with the definition.
For the coordinate operator x̂ the action on a wave function is merely
multiplication,

x̂ψ(x) = xψ(x). (37)

On the other hand, this should be expressed in terms of the kernelX(x, x′),

x̂ψ(x) =
∫
dx′X(x, x′)ψ(x′). (38)

The comparison of these two expressions that should be valid for an arbi-
trary ψ(x) leads to the local kernel

X(x, x′) = xδ(x− x′). (39)

For the momentum operator and the corresponding kernel P (x, x′) we
have

p̂ψ(x) = −ih̄dψ
dx

=
∫
dx′ P (x, x′)ψ(x′). (40)

¿From here we see that the kernel is the derivative of the δ-function,

P (x, x′) = ih̄
d

dx′
δ(x− x′). (41)
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Indeed, with this kernel, the last expression in (40) becomes (with the aid
of the integration by parts)

ih̄

∫
dx′

[
d

dx′
δ(x− x′)

]
ψ(x′)

= ih̄

∫
dx′

{
d

dx′
[δ(x− x′)ψ(x′)]− δ(x− x′)

dψ(x′)
dx′

}
, (42)

and the integrated term vanishes for any finite x when taken on the limits
x′ → ±∞, whereas the last term provides the needed result after the inte-
gration with δ(x−x′). The derivative with respect to x′ can be substituted
by (with the opposite sign) the derivative with respect to x, then

P (x, x′) = −ih̄ d

dx
δ(x− x′). (43)

For the inversion we have

P̂ψ(x) = ψ(−x) =
∫
dx′ P(x, x′)ψ(x′), (44)

which shows that
P(x, x′) = δ(x+ x′). (45)

In the case of the displacement operator,

D̂(a)ψ(x) = ψ(x− a) =
∫
dx′D(a;x, x′)ψ(x′), (46)

that shows immediately that

D(a;x, x′) = δ(x− x′ − a). (47)

Finally, for the scaling transformation,

M̂(α) =
√
αψ(αx) =

∫
dx′M(α;x, x′)ψ(x′), (48)

M(α;x, x′) =
√
αδ(x′ − αx). (49)

b. An operator F̂ commuting with x̂ has to be a function of x̂ only,

F̂ = f(x̂). (50)

The corresponding kernel is

F (x, x′) = f(x)δ(x− x′). (51)
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c. An operator Ĝ commuting with p̂ has to be a function of p̂ only,

Ĝ = g(p̂). (52)

The kernel of this operator contains a corresponding function g of the
differentiation operator acting onto the δ-function, compare (41),

G(x, x′) = g(ih̄d/dx′)δ(x− x′). (53)

d. Only an operator Ĉ of multiplication by a constant c commutes both
with x̂ and p̂. The corresponding kernel is

C(x, x′) = cδ(x− x′). (54)

e. For the factorized kernel

F̂ψ(x) = f(x)
∫
dx′ g(x′)ψ(x′). (55)

An arbitrary matrix element F12 of this operator in the coordinate repre-
sentation has a form

F12 =
∫
dxψ∗1(x)F̂ψ2(x) =

∫
dx dx′ ψ∗1(x)f(x)g(x′)ψ2(x′). (56)

For a Hermitian operator, F̂ = F̂ †,

F12 = F ∗
21 =

∫
dx dx′ ψ2(x)f∗(x)g∗(x′)ψ1(x′). (57)

Interchanging here the variables x↔ x′ and comparing with (56), we find
the condition of hermiticity

f(x)g(x′) = f∗(x′)g∗(x) ; g(x) = f∗(x). (58)

Thus, for a Hermitian factorized operator, the kernel should be unitary-
symmetric,

F̂ = F̂ † ; F (x, x′) = f(x)f∗(x′). (59)

The eigenvalue problem for this operator,

F̂ψ(x) = λψ(x), (60)

takes the form
λψ(x) = f(x)

∫
dx′ f∗(x′)ψ(x′). (61)
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Since the integral in the right hand side here is just a number, an inner
product 〈f |ψ〉, we see that the entire x-dependence of ψ(x) is given by
f(x) if 〈f |ψ〉 6= 0. Multiplying eq. (61) by 〈f |, we get

(λ− 〈f |f〉)〈f |ψ〉 = 0. (62)

Thus, we see two possibilities. (i) If ψ(x) = const · f(x), then the product
〈f |ψ〉 6= 0, and

λ = 〈f |f〉 =
∫
dx |f(x)|2. (63)

(ii) Any function ψ(x), which is orthogonal to f(x) so that 〈f |ψ〉 = 0, is
also, according to (61), an eigenfunction of F̂ with the eigenvalue λ = 0.
Therefore the operator

Λ̂ =
F̂

〈f |f〉
(64)

is a projection operator which projects out a component of any vector in
Hilbert space along the axis corresponding to f(x); for a vector along this
axis the eigenvalue of Λ̂ is 1. For any orthogonal vector, the eigenvalue is
0. The nonzero eigenvalue is nondegenerate while the degeneracy of the
zero eigenvalue is infinite.

f. The Schrödinger equation for a particle in the potential Û is, as usual,

ih̄
∂Ψ(r, t)
∂t

= − h̄2

2m
∇2Ψ(r, t) + ÛΨ(r, t). (65)

For a nonlocal potential with a kernel U(r, r′) this means that

ih̄
∂Ψ(r, t)
∂t

= − h̄2

2m
∇2Ψ(r, t) +

∫
d3r′ U(r, r′)Ψ(r′, t). (66)

The complex conjugate equation reads

−ih̄∂Ψ∗(r, t)
∂t

= − h̄2

2m
∇2Ψ∗(r, t) +

∫
d3r′ U∗(r, r′)Ψ∗(r′, t). (67)

Multiplying (66) by Ψ∗ and (67) by Ψ, subtracting the second equation
from the first and defining in a standard way the probability density ρ(r, t)
and current j(r, t),

ρ(r, t) = |Ψ(r, t)|2, j(r, t) =
h̄

2mi
(Ψ∗∇Ψ− (∇Ψ∗)Ψ), (68)

we obtain the analog of the continuity equation

∂ρ(r, t)
∂t

+ div j(r, t)
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= − i

h̄

{
Ψ∗(r, t)

∫
d3r′ U(r, r′)Ψ(r′, t)−Ψ(r, t)

∫
d3r′ U∗(r, r′)Ψ∗(r′, t)

}
.

(69)
Because of the nonlocality of the potential, the conventional continuity
equation is not fulfilled, the probability density can be changed not only
by the current through the surface but also by an action at a distance.
Integrating eq. (69) over the infinite volume and assuming that there is
no current through an infinitely remote surface, we come to

∂

∂t

∫
d3r ρ(r, t) =

∫
d3r d3r′ [Ψ∗(r, t)U(r, r′)Ψ(r′, t)−Ψ(r, t)U∗(r, r′)Ψ∗(r′, t)] .

(70)
Interchanging in the last term of (70) r ↔ r′ and using the Hermiticity of
the kernel,

U(r, r′) = U∗(r′, r), (71)

we come to the conservation of the total probability (normalization)∫
d3r ρ(r, t) = const. (72)

The Hermitian (even nonlocal) potential does not create or annihilate
particles and preserves the total probability.

5. Let list all N eigenvalues fi, i = 1, . . . , N , of the operator F̂ . An operator
F̂ − f1 has eigenvalues

0, f2 − f1, . . . , fN − f1.

In the same way, the operator (F̂ − f2)(F̂ − f1) has eigenvalues

0, 0, (f3 − f2)(f3 − f1), . . . , (fN − f2)(fN − f1).

The operator Ẑ constructed as a product of all binomial expressions F̂−fi

has N zero eigenvalues, i.e. in this N -dimensional space

Ẑ =
N∏

i=1

(F̂ − fi) = 0. (73)

Indeed, the set |i〉 of eigenvectors of a Hermtian operator F̂ is complete.
Any vector can be expanded as

|Ψ〉 =
∑

i

Ci|i〉. (74)

For any component in the expansion (74), there is a factor in the product
(73) which vanishes. Thus, for any |Ψ〉,

Ẑ|Ψ〉 = 0. (75)
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But performing explicitly the multiplication in the product (73) we get Ẑ
as a polynomial of the N th order in F̂ ,

Ẑ = F̂N − F̂N−1
∑

i

fi + F̂N−2
∑
i 6=j

fifj + . . . +
∏

i

(−fi). (76)

Since Ẑ ≡ 0, this allows one to express F̂N as a linear combination of all
lower powers Fn, n = 0, 1, . . . , N − 1.

For the inversion operator P̂ the result is especially simple. Hilbert space
is effectively two-dimensional, N = 2, the eigenvalues are 1 and -1, for
even or odd functions, respectively, so that

Ẑ = (P̂ − 1)(P̂ + 1) = 0 ; P̂2 = 1. (77)

b. We need to find an operator which annihilates all components with
j 6= i but gives the result equal to 1 acting on the vector |i〉. Therefore we
need to take

Λ̂i =
∏

j( 6=i)

F̂ − fj

fi − fj
. (78)

c. See (64).
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