
SOLUTIONS for Homework #2

1. The given wave function can be normalized to the total probability equal
to 1,

ψ(x) = Ne−λ|x|. (1)

To get ∫ ∞

−∞
dx |ψ(x)|2 = 2|N |2

∫ ∞

0

dx e−2λx = 1, (2)

we choose
N =

√
λ. (3)

This state corresponds to the average position 〈x〉 = 0 and the coordinate
uncertainty

〈x2〉 =
∫ ∞

−∞
dx |ψ(x)|2x2 =

1
2λ2

. (4)

The wave function in the momentum representation is given by the Fourier
expansion,

φ(k) =
∫ ∞

−∞
dxψ(x)e−ikx, (5)

or, after simple calculation,

φ(k) =
√
λ

(
1

λ+ ik
+

1
λ− ik

)
=

2λ3/2

λ2 + k2
, (6)

the Lorentzian in momentum space is the Fourier image of the exponential
packet in coordinate space. The centroid of φ(k) is, obviously, at 〈k〉 = 0,
while its variance can be defined as

〈k2〉 =
∫ ∞

−∞

dk

2π
|φ(k)|2k2 = λ2. (7)

Thus, we have

∆x =
1√
2λ
, ∆p = h̄∆k = h̄λ, (8)

and therefore
(∆x)(∆p) =

h̄√
2
>
h̄

2
, (9)

in accordance with the uncertainty relation.

2. To find the lower bound we assume that the quantum spreading during
given time τ is much greater than the original position uncertainty. Then

∆x '
√
h̄τ

m
. (10)
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For τ ≈ 1010 years ≈ 3×1017 sec this gives ∆x ' 6×108 cm for an electron,
' 1.5× 107 cm for a proton, ' 3× 10−6 cm for an object of m = 1 g. For
the Universe we can make an estimate starting with an equivalent number
of protons 10−5 cm−3 which would give a critical density Ω = 1 of the
Universe. This would give, in the volume of c× t = 1010 light years, total
mass M ≈ 1082me, or the spreading distance by 41 order of magnitude
smaller than for an electron...

3. Let us consider the components φ1,2(k) of the initial wave function in the
momentum representation,

ψ1,2(x, 0) =
∫

dk

2π
φ1,2(k)eikx. (11)

/We always define the Fourier transformation with the factor (2π)−d,
where d is the dimension of space, in the momentum integral

∫
ddk./ If the

energy of a plane wave with wave vector k is ε(k), for example h̄2k2/2m,
the time evolution of these components is given by

ψ1,2(x, t) =
∫

dk

2π
φ1,2(k)eikx−(i/h̄)ε(k)t. (12)

Therefore we can find the time dependence of the overlap,

γ(t) =
∫
dx

[∫
dk1

2π
φ1(k1)eik1x−(i/h̄)ε(k1)t

]∗ [∫
dk2

2π
φ2(k2)eik2x−(i/h̄)ε(k2)t

]
.

(13)
First we notice that the coordinate integral cancels all interference terms
except for those with coherent spatial phases, k1 = k2,∫

dx e−ik1x+ik2x = 2πδ(k1 − k2). (14)

Now we can take into account this δ-function to integrate over one of the
wave vectors and see that the energy dependent phases cancel,

γ(t) =
∫

dk

2π
φ∗1(k)φ2(k) = γ(0). (15)

The overlap is constant in time. The reason for this, as can be seen from
the derivation, is that only the mutually coherent parts of the packet in-
terfere in infinite space, and they have the same energy dependent phases.

4. In the frame K ′ the wave function has a standard form being expressed
through the coordinate x′ with respect to this frame,

Ψ′(x′, t) = Aeik′x′−iω′t, (16)
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while in the frame K
Ψ(x, t) = Aeikx−iωt. (17)

The coordinates are related by the Galilean transformation

x = x′ + ut. (18)

Therefore the velocities are related as

v = v′ + u ; k =
mv

h̄
=
m(v′ + u)

h̄
= k′ +

mu

h̄
, (19)

and energies as

h̄ω =
mv2

2
=
m(v′ + u)2

2
. (20)

The result can be written as

Ψ(x, t) = Ψ′(x′, t′) exp
[
i

h̄

(
mux− mu2

2
t

)]
. (21)

The result is the product of the function Ψ′(x′, t′) describing the particle
motion in the frame K ′ and the exponent which characterizes the free
motion of this particle together with the frame K ′ relative to the frame
K.

5. Again, see Problem 3, it is convenient to choose the normalization in such
a way that ∫

dk

2π
|φ(k)|2 = 1, ; N2 = α

√
8π. (22)

The wave function in the coordinate representation is given by

Ψ(x, 0) = N

∫
dk

2π
eikx−α2(k−k0)

2
. (23)

This integral can be easily evaluated by forming the full square in the
exponent and using the standard Gaussian integral∫ ∞

−∞
dze−z2/2σ2

=
√

2πσ2. (24)

We obtain (the normalization has to be correct automatically)

Ψ(x, 0) =
1

(2πα2)1/4
eik0x−x2/(4α2). (25)

This is again the Gaussian packet moving as a whole with momentum h̄k0.
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a. Using these results we find the initial Gaussian probability density

ρ(x, 0) = |Ψ(x, 0)|2 =
1√

2πα2
e−x2/(2α2) (26)

b. According to eq. (26), 〈x〉 = 0 and 〈x2〉 = (∆x)2 = α2. From the
original momentum wave function we find

〈k2〉 = N2

∫
dk

2π
e−2α2(k−k0)

2
k2 = k2

0 +
1

4α2
. (27)

Therefore

(∆p)2 = h̄2(〈k2〉 − 〈k〉2) =
h̄2

4α2
, (28)

and the uncertainty product at t = 0 is

[(∆x)(∆p)]0 =
h̄

2
. (29)

Later in the course we show that this value is the minimum possible for
any quantum state of a particle. Thus, the conclusion is that the Gaussian
packet minimizes the uncertainty relation.

c. Each momentum component of the wave function evolves with time
independently acquiring the phase corr to the dispersion law ε(k), see
again Problem 3. Therefore eq. (23) shows that

Ψ(x, t) = N

∫
dk

2π
eikx−α2(k−k0)

2
e−ih̄(k2/2m)t. (30)

The integration gives the time-dependent Gaussian packet,

Ψ(x, t) =
1

(2πα2)1/4

1√
1 + (ih̄t/2mα2)

exp
{
− (x2 − 4iα2k0x+ 2iα2(h̄k2

0/m)t
4α2[1 + (ih̄/2mα2)t]

}
,

(31)
with the coordinate probability density, compare with (26),

ρ(x, t) =
1√

2πα2(t)
exp

{
− [x− (h̄k0/m)t]2

2α2(t)

}
, (32)

with the effective time-dependent parameter of the packet

α2(t) = α2

[
1 +

(
h̄t

2mα2

)2
]
. (33)

Obviously, the probability density is normalized to 1 for all times, as it
should be due to the probability conservation.
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d. The center of the packet is moving with the classical speed,

〈x(t)〉 =
h̄k0

m
t (34)

(the group velocity of the wave packet equals velocity of the particle). The
packet is spreading with the width growing as

(∆x)t = α(t) = α
√

1 + (h̄/2mα2)2t2. (35)

We see that the effects of the initial size and subsequent quantum spread-
ing add in quadratures. At sufficiently large time, t� mα2/h̄, the width
grows linearly,

(∆x)t '
h̄

2mα
t. (36)

With the initial momentum uncertainty ∆k ∼ 1/2α, the spread of speeds
of various Fourier components is ∆v ∼ ∆p/m ∼ h̄/2mα, and the spreading
of the packet during time t becomes ∆x ∼ t∆v, in agreement with (35).

Since the momentum wave function acquires only a time-dependent phase,
the momentum probability density Φ(p, t) does not change with time (each
plane wave component propagates independently without changing its am-
plitude). This means that 〈p〉, 〈p2〉 and ∆p stay constant. The difference
between the momentum and coordinate spreads is due to the fact that
the momentum is constant of motion for free particles. The uncertainty
relation now takes the form

(∆x)(∆p) = h̄
α(t)
2α

=

√
1 +

(
h̄t

2mα2

)2
h̄

2
. (37)
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