
SOLUTIONS for Homework #3

1. In the potential of given form there is no unbound states. Bound states
have positive energies En labeled by an integer n. For each energy level
E, two symmetrically located classical turning points x± = ±x0(E) are
the points where the classical momentum for motion with given E,

p(x;E) =
√

2m[E − U(x)], (1)

vanishes,
p(x±;E) = 0 ; U(x±) = E. (2)

The approximate quantization rule reads∮
dx p(x;E) = 2πnh̄, (3)

where the integral runs over the classical period of motion, or, in our case
of an even potential, U(x) = U(−x), four times from x = 0 to the turning
point x = x0,

4
√

2m
∫ x0

0

dx
√
E − U(x) = 2πnh̄. (4)

This equation determines energy levels En for large n� 1, in the validity
region of the semiclassical quantization.

For our potential U(x) it is convenient to change the coordinate variable
introducing x = [(E/α)η]1/s. Then the upper limit x0 → 1, and the
quantization condition (4) takes the form

4
s

√
2mE

(
E

α

)1/s

Is = 2πnh̄, Is =
∫ 1

0

dη η(1−s)/s
√

1− η. (5)

The integral here is a number of the order of 1 which depends on the
potential power s. Therefore the energy spectrum is given by

En = (Csn)2s/(s+2), (6)

where the energy scaling is determined by the constant parameter

Cs =
πh̄sα1/s

2
√

2mIs
, (7)

The integral Is is the Euler integral of the first order, or the Beta-function,
and can be expressed via the Gamma-functions,

Is =
Γ(1/s)Γ(3/2)

Γ[(3/2) + (1/s)]
. (8)
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For the harmonic oscillator potential U(x) = (1/2)mω2x2, we have

s = 2, α = (1/2)mω2, Γ(1/2) =
√
π, Γ(3/2) =

1
2
Γ(1/2), Γ(2) = 1,

(9)
so that

I2 =
π

2
; En = C2n = h̄ωn. (10)

The more precise quantization rule would contain (n + 1/2) instead of n
in the right hand side of eq. (3); this would lead to the exact result for
the harmonic oscillator En = h̄ω(n + 1/2) and to better approximations
for other values of s.

2. Let the typical radii for the two electrons be r1 and r2. In the ground
state their typical momenta are, according to the uncertainty relation,
p1 ∼ h̄/r1 and p2 ∼ h̄/r2. The minimum repulsion energy for the two
electrons can be roughly estimated as e2/|r1 − r2|max = e2/(r1 + r2).
Then the energy of the ground state can be written as

E(r1, r2) =
h̄2

2m

(
1
r21

+
1
r22

)
− Ze2

(
1
r1

+
1
r2

)
+

e2

r1 + r2
. (11)

Obviously, the electrons are equivalent (they should have opposite spin
projections but the same orbital wave functions). Therefore, in the ground
state it should be r1 = r2 ≡ r. The energy becomes a function of r,

E(r, r) =
h̄2

mr2
− 2e2

Z − (1/4)
r

. (12)

The minimum of this function is reached at

r = aB
1

Z − (1/4)
, aB =

h̄2

me2
, (13)

as if each electron would feel the Coulomb field of the effective charge

Zeff = Z − 1
4
. (14)

The total two-electron energy (12) for this radius is equal to doubled
energy of a single-electron orbit in a hydrogen-like field of the effective
charge (13),

E = −me
4

h̄2 Z2
eff = −2Z2

eff Ry; (15)

recall that 1 Ry (Rydberg)=me4/2h̄2=13.6 eV. Now we predict binding
energies (in Ry) 1.12 (H−), 6.12 (He), 15.12 (Li+), 28.12 (Be++), 45.12
(B+++), and 66.12 (C++++), in agreement with data much better than
one would expect for such a simple estimate.
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3. a. Using the Schrödinger equations for two wave functions with the same
Hamiltonian Ĥ,

−ih̄∂Ψ∗
1

∂t
= Ĥ∗Ψ∗

1, ih̄
∂Ψ2

∂t
= ĤΨ2, (16)

and taking the difference of these equations, we obtain

ih̄
∂

∂t
(Ψ∗

1Ψ2) = Ψ∗
1(ĤΨ2)− (Ĥ∗Ψ∗

1)Ψ2. (17)

In the coordinate representation the potential terms in the Hamiltonian
Ĥ = K̂ + U cancel if the potential U(r) is real, U = U∗. The remaining
kinetic term

K̂ =
p̂2

2m
= − h̄2

2m
∇2 = K̂∗ (18)

is real as well. Introducing the transition density

ρ12 ≡ Ψ∗
1Ψ2 (19)

and the transition current

j12 =
h̄

2mi
[Ψ∗

1∇Ψ2 − (∇Ψ∗
1)Ψ2], (20)

we come to the continuity equation

∂ρ12

∂t
+ div j12 = 0. (21)

The standard equation corresponds to the diagonal case, Ψ1 = Ψ2.

b. Two stationary wave functions Ψ1 and Ψ2 describe the states with
certain energies E1 and E2, respectively. Their time dependence is given
by

Ψ1,2(r, t) = ψ1,2(r)e−(i/h̄)E1.2t. (22)

The coordinate amplitudes ψ1,2 are the eigenfunctions of the same Hamil-
tonian,

Ĥψ1,2 = E1,2ψ1,2. (23)

The continuity equation of point a can be written as

ih̄
∂ρ12

∂t
= (E2 − E∗1 )ψ∗1ψ2e

−(i/h̄)(E2−E∗
1 )t. (24)

Our first assumption should be that the energy values E1 and E2 are real.
Then eq. (24) means that the transition density ρ12 oscillates in time with
the transition frequency ω21 = (E2 − E1)/h̄; the expectation value of the
density ρ11 is simply constant in time for a stationary state Ψ1. Now let
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us integrate both parts of eq. (24) over the entire available volume V .
The left hand side, according to the continuity equation, reduces to

ih̄

∫
d3r

∂ρ12

∂t
= −ih̄

∫
d3r divj12. (25)

The volume integral in eq. (25) can be converted into the surface integral∮
dA · j12, the flux of the transition current through the surface area A.

Now we make the second assumption that this flux vanishes. This happens
in particular if the wave functions ψ1 and ψ2, along with their gradients,
fall off at the remote boundaries of the volume sufficiently fast. If this is
the case, eqs. (25) and (24) lead to the conclusion that

(E1 − E2)
∫
d3r ψ∗1ψ2 = 0. (26)

If the energies E1 and E2 do not coincide, the corresponding coordinate
eigenfunctions are orthogonal,∫

d3r ψ∗1ψ2 = 0. (27)

For coinciding energies we only extract that the integral of ρ12 does not
change in time, ∫

d3r ψ∗1ψ2 = const. (28)

If there is no degeneracy so that there exists only one function ψ corre-
sponding to given energy, its normalization is time-independent,∫

d3r |ψ|2 = const. (29)

4. The Ehrenfest equations of motion for the expectation value of a time
independent operator Ô in the system with hamiltonian Ĥ are

ıh̄
d

dt
〈Ô〉 = 〈[Ô, Ĥ]〉. (30)

For a free particle in one dimension

Ĥ =
p̂2

2m
(p̂ = p̂x, [x̂, p̂] = ih̄). (31)

We need the commutators

[x̂, p̂2] = 2ih̄p̂, (32)

[x̂2, p̂2] = x̂[x̂, p̂2] + [x̂, p̂2]x̂ = 2ih̄(x̂p̂+ p̂x̂). (33)
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Using these rules, we obtain the equations of motion for the mean values:

ih̄
d

dt
〈x̂〉 = [x̂, Ĥ] = ih̄

〈p̂〉
m

;
d〈x̂〉
dt

=
〈p̂〉
m

(34)

(an analog of the velocity definition v = p/m);

d

dt
〈x̂2〉 =

1
m
〈(x̂p̂+ p̂x̂); (35)

d

dt
〈p̂〉 =

d

dt
〈p̂2〉 = 0. (36)

The last result, eq. (36), means that the momentum distribution does not
change in free motion, in concordance with physical arguments. The con-
servation of 〈p̂2〉 is the same as the conservation of mean energy. Finally,

d

dt
〈x̂p̂+ p̂x̂〉 =

1
ih̄
〈[x̂p̂+ p̂x̂, Ĥ] =

2
m
〈p̂2〉. (37)

Now we can solve the equations of motion for the expectation values. From
eq. (37) we obtain

〈x̂p̂+ p̂x̂〉 = 2
〈p̂2〉
m

t+ 〈x̂p̂+ p̂x̂〉0, (38)

where the last item is determined by the initial conditions. Eq. (35) now
gives

〈x̂2〉 =
〈p̂2〉
m2

t2 +
〈x̂p̂+ p̂x̂〉0

m
t+ 〈x̂2〉0, (39)

whereas eq. (34) defines the analog of the uniform motion,

〈x̂〉 =
〈p̂〉
m
t+ 〈x̂〉0. (40)

Combining those results, we can calculate the uncertainty of the position

(∆x)2 = 〈x̂2〉 − 〈x̂〉2 (41)

as a function of time:

(∆x)2 = (∆x)20 +
1
m

[〈x̂p̂+ p̂x̂〉0 − 2〈x̂〉0〈p̂〉0] t+
(∆p)2

m2
t2. (42)

After a very long time interval, one will see only “ballistic” spreading,

(∆x)2 ≈ (∆p)2

m2
t2, (43)

the packet is broadening because of the spread of velocities ∆v ∼ ∆p/m
in the initial state.
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5. a. The equations of motion for the expectation values of the position and
momentum are linear and similar to classical Newton equations:

d

dt
〈x̂〉 =

〈p̂〉
m
, (44)

d

dt
〈p̂〉 = −mω2〈x̂〉. (45)

The general solution describes oscillations with frequency ω,

〈x̂〉 = A cos(ωt) +B sin(ωt), 〈p̂〉 = C cos(ωt) +D sin(ωt). (46)

From equations of motion we obtain

C = mωB, D = −mωA, (47)

and from the initial conditions

〈x̂〉0 = A, 〈p̂〉0 = C. (48)

Thus, the solution is

〈x̂〉 = 〈x̂〉0 cos(ωt) +
〈p̂〉0
mω

sin(ωt), (49)

〈p̂〉 = 〈p̂〉0 cos(ωt)−mω〈x̂〉0 sin(ωt). (50)

b. The equations of motion for quadratic components of the Hamiltonian,

K̂ =
p̂2

2m
, Û =

1
2
mω2x̂2, (51)

can be easily derived with the help of the commutators,

d

dt
〈K̂〉 = −ω

2

2
〈x̂p̂+ p̂x̂〉, (52)

d

dt
〈Û〉 =

ω2

2
〈x̂p̂+ p̂x̂〉. (53)

Of course, energy is conserved,

d

dt
〈K̂ + Û〉 =

d

dt
〈Ĥ〉 = 0. (54)

For the operator in the right hand side parts of eqs. (53) and (54) we find

d

dt
〈x̂p̂+ p̂x̂〉 = 4〈K̂ − Û〉. (55)
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Taking the second time derivative we come to(
d2

dt2
+ 4ω2

)
〈K̂ − Û〉 = 0. (56)

The general solution corresponds to the oscillation with a double fre-
quency,

〈K̂ − Û〉 = A cos(2ωt) +B sin(2ωt). (57)

Remembering that

〈Ĥ〉 = 〈K̂ + Û〉 = 〈K̂ + Û〉0, (58)

we find separately the expectation values of kinetic and potential energy,

〈K̂〉 =
1
2

[
〈K̂ + Û〉0 +A cos(2ωt) +B sin(2ωt)

]
, (59)

〈Û〉 =
1
2

[
〈K̂ + Û〉0 −A cos(2ωt)−B sin(2ωt)

]
, (60)

To find the constant coefficients A and B, we apply the initial conditions:

A = 〈K̂ − Û〉0, B = −ω
2
〈x̂p̂+ p̂x̂〉0, (61)

where the last equation follows from eqs. (52) and (59). With all these
results,

〈x̂2〉 =
1

mω2

{
〈Û〉0[1 + cos(2ωt)] + 〈K̂〉0[1− cos(2ωt)] +

ω

2
〈x̂p̂+ p̂x̂〉0 sin(2ωt)

}
.

(62)
Similarly,

〈p̂2〉 = m
{
〈Û〉0[1− cos(2ωt)] + 〈K̂〉0[1 + cos(2ωt)]− ω

2
〈x̂p̂+ p̂x̂〉0 sin(2ωt)

}
.

(63)
c. Collecting our previous calculations we find the mean square deviation
of the coordinate

(∆x)2 = (∆x)20 cos2(ωt)+
(∆p)20
m2ω2

sin2(ωt)+
〈x̂p̂+ p̂x̂〉0 − 2〈x̂〉0〈p̂〉0

2mω
sin(2ωt),

(64)
as in the textbook. For ω → 0 we arrive at the limit of free motion; using
sinx/x→ 1 for x→ 0, eq. (64) becomes

(∆x)2 = (∆x)20 +
(∆p)20
m2

t2 +
〈x̂p̂+ p̂x̂〉0 − 2〈x̂〉0〈p̂〉0

m
t. (65)

d. With the use of eq. (50) we find the mean square deviation of the
momentum

(∆p)2 = (∆p)20 cos2(ωt)+m2ω2(∆x)20 sin2(ωt)−mω
2

[〈x̂p̂+p̂x̂〉0−2〈x̂〉0〈p̂〉0] sin(2ωt).

(66)
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