
SOLUTIONS for Homework #4

1. It is convenient to use the vector form writing all vectors V in terms of
their Cartesian components Vi. The basic commutator is that between the
components of the position vector x̂i and those of the momentum vector
p̂i,

[p̂i, x̂j ] = −ih̄δij . (1)

The components of the orbital momentum operator L̂ are

L̂i = (r̂× p̂)i = εijkx̂j p̂k, (2)

where εijk is the fully antisymmetric tensor which has the nonzero compo-
nents only if all three indices are different, and these nonzero components
are equal to 1 for the right-hand order of indices (123, 231, and 312), and
-1 for the left-hand order (213, 321, and 132); as always in such cases,
the summation over twice repeated Cartesian indices (in our case j and
k) is implied and not indicated explicitly. Note that in this expression
the order of coordinate and momentum operator does not matter because
the vector product contains only the products of different components of
coordinate and momentum, and the latter commute, eq. (1).

From eq. (1) it follows for arbitrary functions f(r̂) or g(p̂) that

[p̂i, f(r̂)] = −ih̄ ∂f
∂x̂i

, [x̂i, g(p̂)] = ih̄
∂g

∂p̂i
. (3)

Take, for example a scalar function of momentum g(p̂2). Since the mo-
mentum components commute among themselves,

[L̂i, g(p̂2)] = εijk[x̂j p̂k, g(p̂2)] = εijk[x̂j , g(p̂2)]p̂k. (4)

The gradient of any scalar function has a radial direction in corresponding
space:

∂

∂pj
g(p2) =

∂g

∂p

pj

p
. (5)

Therefore we come to

[L̂i, g(p̂2)] = εijkp̂j p̂k × function(p̂2) = 0, (6)

since the result would be the i-th component of the vector product of the
momentum vector by itself, and such a product is equal to zero (this fol-
lows formally from the antisymmetry of εijk which is contracted with the
symmetric tensor pjpk). The same conclusion holds for a scalar function
of coordinates. The physical reason for the disappearance of the commu-
tators of the orbital momentum with scalars is in the fact that, as we will
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see later, the orbital momentum is the generator of spatial rotations, and
scalar functions do not change (are invariant) under rotations.

Now we immediately see that the operator of kinetic energy

K̂ =
p̂2

2m
(7)

is a scalar function of the momentum vector and therefore commutes with
the orbital momentum. For the operator U(r̂) we obtain in a similar way

[L̂i, U(r̂)] = εijkx̂j [p̂k, U(r̂] = −ih̄εijkx̂j∇kU(r̂) = −ih̄
(
r̂×∇Û

)
i
. (8)

Again, for a potential with central symmetry, U = U(r), its gradient is
directed radially, and the vector product in (8) vanishes.

Since the orbital momentum operator its time independent, the Ehrenfest
equation of motion for its expectation value is

d

dt
〈L̂〉 =

1
ih̄
〈[L̂, Ĥ]〉. (9)

The commutator with kinetic energy disappears, and the result is

d

dt
〈L̂〉 = −〈(r̂×∇Û)〉 = 〈(r̂× F̂)〉, (10)

where F̂ = −∇Û is the force operator. In free motion, or in a central field
U = U(r), the orbital momentum is conserved.

2. The Wigner distribution is usually introduced in a following way. Consider
the single-particle density matrix

ρ(r1, r2) ≡ ψ(r1)ψ∗(r2). (11)

The usual probability density is given by the diagonal (with respect to the
coordinates r1 and r2) part of (11), r1 = r2 = r,

ρ(r, r) = |ψ(r)|2. (12)

It is convenient to introduce the center-of-mass and relative coordinates
of the pair (r1, r2),

R =
r1 + r2

2
, r = r1 − r2, (13)

r1 = R +
r
2
, r2 = R− r

2
. (14)
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Then we made the Fourier analysis with respect to the relative coordinate
and introduce the momentum p instead of r. This leads to the Wigner
distribution

W (R,p) =
∫
d3r e−(i/h̄)(p·r)ψ(R + r/2)ψ∗(R− r/2). (15)

/We do not need to put primes, as in the textbook, because our opera-
tors are always carrying hats, and there cannot be any confusion; here all
variables are c-numbers rather than operators. Also, according to our con-
vention, the normalizing factor (2πh̄)−3 comes together with the volume
element d3p in the momentum space./

5a. For real values of the variables R and p, the complex conjugate
function is

W ∗(R,p) =
∫
d3r e(i/h̄)(p·r)ψ∗(R− r/2)ψ(R + r/2). (16)

The change of integration variable r → −r shows that W ∗ = W , i.e. the
Wigner distribution is a real-valued function (not positively defined).

5b. The integration over d3p provides the δ-function in relative coordinate
and leads to the density matrix at coinciding coordinates,∫

d3p

(2πh̄)3
W (R,p) =

∫
d3r δ(r)ψ(R+ r/2)ψ∗(R− r/2) = |ψ(R)|2. (17)

Therefore, for a normalized function,
∫
d3r |ψ(R)|2 = 1,

〈f(R)〉 ≡
∫
d3Rf(R)|ψ(R)|2 =

∫
d3Rd3p

(2πh̄)3
f(R)W (R,p), (18)

i.e. expectation values are given by the integral over the phase space as if
W would be a classical distribution function (in that case it should have
been positively defined).

5c. Taking in the previous equation f(R) ≡ 1, we come, for the normalized
ψ(R), to the probabilistic normalization of the Wigner distribution,∫

d3Rd3p

(2πh̄)3
W (R,p) = 1. (19)

5d. It is clear from (12) and (18) that

〈δ(R−R0)〉 = |ψ(R0)|2. (20)

6a. To get an equivalent form of the Wigner distribution, we make the
transformation to the wave function in the momentum representation,

ψ(R + r/2) =
∫

d3p1

(2πh̄)3
e(i/h̄)p1·(R+r/2)φ(p1), (21)
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ψ∗(R− r/2) =
∫

d3p2

(2πh̄)3
e−(i/h̄)p2·(R−r/2)φ∗(p2). (22)

Using this form in (16) we first collect the terms needed for integration
over d3r,∫

d3r exp[(i/h̄)r ·(−p+p1/2+p2/2)] = (2πh̄)3δ(p−p1/2−p2/2). (23)

Since the remaining integral contains exp[(i/h̄)R · (p1 − p2)], it is conve-
nient to introduce instead of p1 and p2 new variables

p′ =
1
2
(p1 + p2), q = p1 − p2, (24)

or, inversely,
p1 = p +

q
2
, p2 = p− q

2
, (25)

which preserve the integration volume, d3p′ d3q = d3p1 d
3p2, and integrate

over d3p′ using δ(p′−p) from eq. (23). This substitutes p′ by the external
momentum p. Finally,

W (R,p) =
∫

d3q

(2πh̄)3
e(i/h̄)(R·q)φ(p + q/2)φ∗(p− q/2). (26)

6b. The integration of eq. (26) over d3R produces (2πh̄)3δ(q). Whence,
we obtain the probability density in momentum space,∫

d3RW (R,p) = |φ(p)|2. (27)

The momentum functions φ(p) are normalized to 1 [with the volume ele-
ment d3p/(2πh̄)3] if the coordinate functions are normalized to 1. There-
fore, for any function of momentum,

〈g(p)〉 =
∫

d3p

(2πh̄)3
g(p)|φ(p)|2 =

∫
d3Rd3p

(2πh̄)3
g(p)W (R,p). (28)

Indeed, the Wigner distribution plays the role similar to the probability
density in phase space and gives the formulation of quantum mechanics
formally close to classical mechanics.

3. The definitions: a transpose operator F̂T ,

〈n|F̂T |m〉 = 〈m|F̂ |n〉; (29)

a complex conjugate operator F̂ ∗,

〈n|F̂ ∗|m〉 = 〈n|F |m〉∗; (30)
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a Hermitian conjugate operator F̂ †,

〈n|F̂ †|m〉 = 〈m|F̂ |n〉∗, (31)

which means
F̂ † = (F̂T )∗; (32)

an inverse operator F̂−1,

F̂ F̂−1 = F̂−1F̂ = 1̂ (unit operator). (33)

First three operators are real,

P̂∗ = P̂, D̂(a)∗ = D̂(a), M̂∗(α) = M̂(α); (34)

the operator k̂ = p̂/h̄ is imaginary,

k̂∗ = i
d

dx
= −k̂. (35)

For real operators, transpose and Hermitian conjugation coincide. Since

〈n|P̂|m〉 =
∫
dxψ∗n(x)Pψm(x) =

∫
dxψ∗n(x)ψm(−x) =∫

dxψ∗n(−x)ψm(x) =
∫
dx (P̂ψn(x))∗ψm(x), (36)

the inversion operator is Hermitian,

P̂† = P̂T = P̂. (37)

For the displacement operator we find

〈n|D̂(a)|m〉 =
∫
dxψ∗n(x)ψm(x− a) =∫

dxψ∗n(x+ a)ψm(x) =
∫
dx (D̂(−a)ψn(x))∗ψm(x), (38)

which means
D̂†(a) = D̂T (a) = D̂(−a). (39)

For the scaling operator,

〈n|M̂(α)|m〉 =
∫
dxψ∗n(x)

√
αψm(αx). (40)

Changing variables y = αx and renaming back y → x, we obtain

〈n|M̂(α)|m〉 =
1√
α

∫
dxψn(x/α)ψm(x) =

∫
dx (M̂(α−1)ψn(x))∗ψm(x).

(41)
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Thus,
M̂†(α) = M̂T (α) = M̂(1/α). (42)

The first three operators cannot have eigenfunctions (not identically equal
to zero) which would correspond to the eigenvalue 0; therefore for these
operators the inverse operator is well defined,

P̂−1 = P̂, D̂(a)−1 = D̂(−a), M̂(α)−1 = M̂(1/α). (43)

In all cases we assume that the wave functions are square integrable,∫
dx|ψ(x)|2 < ∞. This is especially important for the operator k̂. Since

it is imaginary, k̂† = −k̂T . But it is Hermitian on a class of square inte-
grable functions (we have demonstrated this for the momentum operator
p̂ = h̄k̂),

k̂† = −k̂T = k̂. (44)

The inverse operator for the operator k̂ does not exist since, for any ψ(x),
the primitive function i

∫
dxψ(x) which should give back ψ(x) after the

action by −i(d/dx) is defined only up to a constant. The reason is that
the constant is an eigenfunction of the operator k̂ corresponding to the
eigenvalue 0 which precludes the unique definition of the inverse operator.

4. The general solution of the Schrödinger equation for free motion with the
initial condition Ψ(x, t = 0) = ψ(x) is given by the independent propaga-
tion of plane waves with momentum p and energy ε(p) = p2/2m,

Ψ(x, t) =
∫

dp

2πh̄
e(i/h̄)[px−(p2/2m)t]φ(p), (45)

where φ(p) is the probability amplitude to have momentum p in the initial
wave function ψ(x), i.e. Fourier expansion of ψ(x),

φ(p) =
∫
dx′ e−(i/h̄)px′

ψ(x′). (46)

Therefore

Ψ(x, t) =
∫
dx′ dp

2πh̄
e(i/h̄)[p(x−x′)−(p2/2m)t]ψ(x′), (47)

or, since the initial point can be arbitrarily taken at t = t′ instead of t = 0
as in eq. (47),

Ψ(x, t) =
∫
dx′ dp

2πh̄
e(i/h̄)[p(x−x′)−(p2/2m)(t−t′)]Ψ(x′, t′). (48)

This allows us to determine the Green function

G(x, t;x′, t′) =
∫

dp

2πh̄
e(i/h̄)[p(x−x′)−(p2/2m)(t−t′)]. (49)
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This is a particular case of the general result valid for any time-independent
Hamiltonian Ĥ with the spectrum {En} and corresponding stationary
eigenfunctions ψn(x),

Ĥψn = Enψn. (50)

The Green function for the general situation is

G(x, t;x′, t′) =
∑

n

ψn(x)ψ∗n(x′)e−(i/h̄)En(t−t′). (51)

In our case the sum over the spectrum becomes the integral
∫
dp/(2πh̄),

the eigenfunctions are ψp(x) = exp[(i/h̄)px], and energies En → ε(p). The
standard calculation of the Gaussian integral in (49) gives

G(x, t;x′, t′) =
√

m

2iπh̄(t− t′)
exp

[
im(x− x′)2

2h̄(t− t′)

]
, (52)

with the obvious generalization for the three-dimensional case,

G(r, t; r′, t′) =
[

m

2iπh̄(t− t′)

]3/2

exp
[
im(r− r′)2

2h̄(t− t′)

]
. (53)

The effective propagation corresponds to the region where the exponent
is not very big (to avoid wild oscillations and compensation), |x − x′| ∼
[h̄(t−t′)/m]1/2, in accordance with the previous estimates of the quantum
spreading.

5. The Hamiltonian of the problem is

Ĥ =
p̂2

2m
− fx̂, f = eE . (54)

a. The Ehrenfest equations of motion can be derived by the straightfor-
ward calculations of the commutators, or just by the analogy to classical
mechanics,

d〈x̂〉
dt

=
〈p̂〉
m
, (55)

d〈p̂〉
dt

= f. (56)

The time integration leads to

〈p̂〉 = 〈p̂〉0 + ft, (57)

〈x̂〉 = 〈x̂〉0 +
〈p̂〉0
m

t+
f

2m
t2. (58)

A semiclassical meaning of these expressions is evident.
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b. In the coordinate representation x̂ = x, p̂ = −ih̄(d/dx), and the wave
equation for the stationary state with energy E is

− h̄2

2m
ψE(x)− fxψE(x) = EψE(x), (59)

whereas in the momentum representation x̂ = ih̄(d/dp), p̂ = p, and the
equation contains only the first derivative,

p2

2m
φE(p)− ih̄f

d

dp
φE(p) = EφE(p). (60)

Of course, it is sufficient to solve only one of those equations; then it is
possible to obtain the remaining counterpart by the Fourier transforma-
tion.

The momentum representation (60) allows one to integrate the equation
directly and obtain

φE(p) = a(E) exp
[
i

h̄

(
Ep

f
− p3

6mh̄f

)]
. (61)

The much more complicated coordinate functions are the so-called Airy
functions which can be expressed in terms of cylindrical functions of order
1/3. Any value of energy E from −∞ to +∞ is possible as seen from the
form of the potential energy U = −fx which allows only infinite motion
and continuous quantum spectrum. All solutions are not degenerate be-
cause the potential allows only the motion from one side, at f > 0 from
−∞ to the turning point and back. Therefore each eigenfunction is fully
characterized by its energy E.

c. The orthogonality of functions for E 6= E′ is seen from∫
dp

2πh̄
φ∗E′(p)φE(p) = a∗(E′)a(E)

∫
dp

2πh̄
e(i/h̄f)p(E−E′) = |a(E)|2fδ(E−E′).

(62)
The convenient choice of the normalization [to δ(E − E′)] is

a(E) =
1√
f
. (63)

The completeness of the set of the eigenfunctions in general is expressed
as ∑

n

ψn(x)ψ∗n(x′) = δ(x, x′). (64)

In our case the summation index n is to be substituted by the continuous
integration variable E,∫ ∞

−∞
dE φE(p)φ∗E(p′) =

1
f
e(i/6h̄mf)(p′3−p3)

∫
dE e(iE/h̄f)(p−p′). (65)
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The integral in the last expression of (65) equals 2πfh̄δ(p− p′). At p = p′

the exponents in front of the integral cancel, and the result is∫ ∞

−∞
dE φE(p)φ∗E(p′) = 2πh̄δ(p− p′), (66)

as it should be with our convention of the momentum integration
∫
dp/(2πh̄).

d. According to the general expression (51), which is valid in an arbitrary
representation,

G(p, t; p′, t′) =
∫
dE φE(p)φ∗E(p′)e−(i/h̄)E(t−t′). (67)

With the explicit form of our wave functions,

G(p, t; p′, t′) = 2πh̄δ(p− p′ − f(t− t′))e−(i/6h̄mf)(p3−p′3). (68)

As a check, we see that at the initial moment t = t′

G(p, t; p′, t) = 2πh̄δ(p− p′). (69)

The delta-function in (68) corresponds to the particle acceleration by the
electric field, see eq. (57). The phase factor comes from the energy increase
due to the acceleration, dp/dt = f ,∫

dt
p2

2m
=

∫
dp

p2

2m
dt

dp
=

p3

6mf
. (70)
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