
SOLUTIONS for Homework #5

1. The positive energy solution corresponds to the scattering of the wave
generated by a source far away on the right hand side and reflected from
the potential. The incident wave is (x > a, V = 0)

ψi = Ae−ikx, x > a, k =

√
2mE
h̄2 , (1)

with an arbitrary amplitude A. The reflected wave in the same region,
x > a, describes the motion in the opposite direction but with the same
absolute value of the wave vector k,

ψr = Beikx, x > a. (2)

Since the probability current in the positive direction of the x-axis,

j =
h̄k

m
(|B|2 − |A|2), (3)

is constant due to the continuity equation (in the one-dimensional case for
a stationary situation dj/dx = 0), and the current vanishes at the infinite
barrier at x = 0, we obtain j = 0 everywhere, the wave is totally reflected.
Then the expression (3) shows that the amplitudes of the incident and
reflected waves are equal, |B| = |A|. But the reflected wave, traveling to
the wall and back, acquires an additional energy-dependent phase δ(E)
(do not confuse with the delta-function!). We can always define

B = A exp(2iδ + iπ). (4)

With this definition of the reflection phase,

ψ = −A
[
ei(kx+2δ) − e−ikx

]
, x > a. (5)

Taking the factor exp(iδ) outside the square bracket, we write down this
solution in the convenient form,

ψ = D sin(kx+ δ), D = −2iAeiδ. (6)

If experimentally one can observe only the reflected (scattered in three-
dimensional geometry) wave, then the phase shift δ is the only observable
quantity. After measuring δ(E) one can try to solve the inverse scattering
problem and determine the potential which caused this phase shift.

To find the phase shift, we need to consider explicitly the wave function
in the well region. With no well at 0 < x < a, we would have the form
(6) of the solution valid everywhere up to the origin. Then the boundary
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condition ψ(0) = 0 would lead to δ ≡ 0 at any energy. This is easy
to understand since in the absence of any distortion along the road the
wave simply changes it sign by π at the reflection from an impenetrable
wall, and this change is already accounted for by our definition (4) of the
relation between B and A. The additional phase comes from the fact that
the motion is distorted by the well at 0 < x < a, where the wave vector is

k′ =
√

2m
h̄2 (E + V0). (7)

Inside the well the solution is the superposition

ψ = A′e−ik′x +B′eik′x, 0 < x < a. (8)

Because of the boundary condition ψ(0) = 0, we see that B′ = −A′, and
the solution is in fact

ψ = C sin(k′x), C = 2iA′. (9)

Now we need to match the functions (6) and (9) as well as their derivatives
at the well boundary x = a:

C sin(k′a) = D sin(ka+ δ), Ck′ cos(k′a) = Dk cos(ka+ δ). (10)

As always in such problems, it is useful to eliminate the constants of
normalization matching the logarithmic derivative ψ′/ψ:

k tan(k′a) = k′ tan(ka+ δ). (11)

This determines the scattering phase

δ(k) = −ka+ tan−1

[
k

k′
tan(k′a)

]
. (12)

The first term here does not depend on the potential and has a pure
kinematic origin: if the particle would not enter the region 0 < x < a of
the potential at all, the phase of the wave function (5) would be smaller
than for free motion by 2δ = 2ka, the phase of free motion from x = a to
the origin and back. Subtracting ka we add in (1) the phase induced by
the motion inside the barrier.

The scattering coefficient defined in the textbook,

|1− e2iδ|2 = 4 sin2 δ, (13)

exhibits resonances (equal to 1) at energies which correspond to

δ = π

(
n+

1
2

)
, n = 0, 1, ... (14)
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In the low-energy scattering, ka � 1 (the wavelength of the particle is
much greater than the width of the well), the resonances appear as the well
is made broader and deeper. The first resonance occurs when k′a ≈ π/2;
since ka� 1, this means that

k0a ≈ π/2, k0 =

√
2mV0

h̄2 . (15)

This is the condition of the appearance of the first bound state in the
well. Indeed, the sinusoidal wave function (9) with zero energy, k′ = k0 =
π/(2a), approaches the edge x = a of the well with the zero derivative
so that, in a little deeper well, the slope of the wave function at the
boundary is getting negative, and the wave function would be able to
match continuously the decreasing exponent as it is required for the bound
state.

For a very narrow well, when ka � 1 and k′a � 1, the scattering phase
will be small as well. In this case we can use the expansions

tan z ≈ z +
z3

3
, tan−1 z ≈ z − z3

3
, (16)

and obtain from (12)

δ =
1
3
a3k(k′2 − k2) =

1
3
(ka)

2mV0a
2

h̄2 . (17)

This result corresponds to perturbation theory: it contains the interaction
parameter 2mV0a

2/h̄2 (the ratio of potential energy V0 to kinetic energy
h̄2/(2ma2) required for localizing a particle interaction region) and the
small low-energy parameter ka.

2. For energy higher than the height of the barrier, E > V0, we proceed
analogously to the previous problem. Let us consider the case of E < V0.
The general solution of the Schrödinger equation for the inner region under
the barrier, 0 < x < a, is a superposition of the two exponents,

ψ(x) = A exp(κx) +B exp(−κx), h̄2κ2 = 2m(V0 − E). (18)

The boundary condition ψ(0) = 0 selects the hyperbolic sine as a correct
superposition,

ψ(x) = C sinh(κx), 0 < x < a, (19)

compare with the usual sine in the previous case, eq. (9). The scatter-
ing solution in the outer region of free motion is a superposition of the
incident and reflected waves. Since at x = 0 we have, as in Problem 1,
an impenetrable well, the total current vanishes, and the reflected and
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incident currents are to be equal. As a result, the outer wave function can
always be written as in (6),

ψ(x) = D sin(kx+ δ), h̄2k2 = 2mE, x > a. (20)

The common normalization D is arbitrary so that we have only one un-
known coefficient C. Together with the phase shift δ, it is to be found
from the continuity of the wave function and its derivative at x = a. For
the amplitude C we find

C =
sin(ka+ δ)
sinh(ka)

D. (21)

The logarithmic derivative ψ′/ψ gives

δ = −ka+ tan−1
(k
κ

tanh(κa)
)
. (22)

In the low energy limit, k/κ � 1, tan−1 can be substituted by its argu-
ment,

κa ≈ κ0a ≡
√

2mV0a2

h̄2 , (23)

and

δ = −ka
[
1− tanh(κ0a)

κ0a

]
. (24)

Here the phase shift is small (linear in k). For the infinite wall, κ0 → ∞
but tanh(κ0a) is finite changing in the interval from −1 to 1. Therefore,
as agrees with the meaning of the phase shift,

δ → −ka, V0 → +∞, (25)

the particle does not penetrate in the repulsion region, and the whole
negative phase is originated by the size of the scatterer.

3. The potential
U(x) = g[δ(x− a) + δ(x+ a)] (26)

consists of two delta-peaks and requires the matching of the wave functions
in three regions. On the left of x = −a, considering that the wave of the
unit amplitude comes from the left,

ψ1(x) = eikx +De−ikx, x < −a. (27)

In between the peaks it is convenient to start counting the phase from the
point of the left peak x = −a,

ψ2(x) = A sin[k(x+ a)] +B cos[k(x+ a)], −a < x < a. (28)
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On the right of the right peak, where only the transmitted wave is possible,

ψ3(x) = Ceik(x−a). (29)

The matching condition at the point x = x0, where the delta-peak of
intensity g is present in the potential, is that of continuity of the function
and a jump of its derivative,

ψ>(x0) = ψ<(x0) ≡ ψ(x0), ψ′>(x0)− ψ′<(x0) =
2mg
h̄2 ψ(x0). (30)

In our case we obtain:

ψ1(−a) = ψ2(−a) ; e−ika +Deika = B, (31)

ψ2(a) = ψ3(a) ; A sin(2ka) +B cos(2ka) = C, (32)

ψ′2(−a)− ψ′1(−a) =
2mg
h̄2 ψ(−a) ; A− i(e−ika −Deika) =

2mg
kh̄2 B,

(33)

ψ′3(a)−ψ′2(a) =
2mg
h̄2 ψ(a) ; iC −A cos(2ka) +B sin(2ka) =

2mg
kh̄2 C.

(34)
Solving eqs. (32) and (34), we obtain

A = C[sin(2ka) + (i− α) cos(2ka)], B = C[cos(2ka)− (i− α) sin(2ka)],
(35)

where the dimensionless parameter is introduced reflecting the relative
strength of the delta-potential compared to kinetic energy,

α =
2mg
kh̄2 . (36)

Eliminating the reflection amplitude D from (31) and (33), we find

A = 2ie−ika − (i− α)B, (37)

and comparing this result with (35),

C =
2ie−ika

2 cos(2ka)(i− α) + sin(2ka)[1− (i− α)2]
; (38)

the transmission coefficient is equal to

T (E) = |C|2 =
4

4α2[sin(2ka)− cos(2ka)]2 + [(2− α2) sin(2ka)− 2α cos(2ka)]2
.

(39)
The transmission resonance corresponds to the maximum value T (E) = 1.
Then R(E) = |D|2 = 0. The condition of vanishing coefficient D is
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equivalent to B = e−ika. Comparing this with the expression (35) for B
and equating two answers for C, we obtain the condition for resonance
energies,

tan(2ka) = − 1
α

= − kh̄2

2mg
. (40)

The corresponding wave vectors k and energies E can be easily found
graphically from the comparison of the two sides of eq. (40). High energy
resonances, n� mga/h̄2, are almost equidistant in the wave vector scale,
kn ≈ (π/2a)(n + 1/2). These values correspond to quasibound states in
the “box” between the delta-peaks.

4. a. Consider the asymptotic form of the wave function with energy E > U0

far away from the barrier:

ψ(x→ −∞) = Aeikx +Be−ikx, k =

√
2mE
h̄2 > 0, (41)

ψ(x→∞) = Ceik′x, k′ =

√
2m(E − U0)

h̄2 > 0. (42)

The reflection and transmission coefficients are equal to

R =
jr
ji

=
|B|2

|A|2
, T =

jt
ji

=
k′

k

|C|2

|A|2
. (43)

The probability current is conserved,

j = ji − jr = jt ; k|A|2(1−R) = k|A|2T. (44)

This is equivalent to
R+ T = 1. (45)

If energy E < U0, the transmitted part of the wave function asymptotically
is a falling exponent,

ψ(x→∞) = Ce−κx, κ =

√
2m(U0 − E)

h̄2 > 0. (46)

In this case jt = 0, T = 0, R = 1, |A| = |B|.
b. Consider two arbitrary solutions ψl and ψr of the Schrödinger equation
for a given potential U(x) and the same energy E,

ψ′′l,r + k2(x)ψl,r = 0, k(x) =

√
2m[E − U(x)]

h̄2 . (47)
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Multiplying the equation for ψl by ψr and subtracting the equation for ψr

multiplied by ψl we see that the terms with the wave vector k(x) cancel,
and we come, similarly to the derivation of the continuity equation, to

ψrψ
′′
l − ψlψ

′′
r = 0. (48)

This means the conservation (x-independence) of the Wronskian

W (ψr, ψl) ≡Wrl(x) = ψrψ
′
l − ψlψ

′
r, (49)

dWrl

dx
= 0, ; Wrl = const. (50)

The wave vector of the problem has the following asymptotic form:

k(x) =

√
2mE
h̄2 ≡ k, x→ −∞, (51)

and

k(x) =

√
2m(E − U0)

h̄2 ≡ k′, x→∞. (52)

We select as our pair of solutions ψl generated by the unit source on the
far left,

ψl(x) =
{
eikx +Be−ikx, x→ −∞,

Aeik′x, x→∞, (53)

and ψr generated by the unit source on the far right,

ψr(x) =
{

Ce−ikx, x→ −∞,
e−ik′x +Deik′x, x→∞. (54)

We are interested in comparing two transmission coefficients,

Tr =
k

k′
|C|2, Tl =

k′

k
|A|2. (55)

To do this comparison, we calculate the same Wronskian (49) in the far
left region and in the far right region,

Wrl(x→ −∞) = 2ikC, Wrl(x→∞) = 2ik′A. (56)

Since Wrl =const, this implies

kC = k′A ; Tr = Tl. (57)
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