
SOLUTIONS for Homework #7

1. In the coordinate representation the eigenfunctions ψ(x) of F̂ satisfy the
differential equation

F̂ψ(x) =
(
αx− ih̄β

d

dx

)
ψ(x) = fψ(x), (1)

where f is the corresponding eigenvalue. Solving this equation we obtain

ψ(x) = Ae−i(α/2h̄β)x2+i(f/h̄β)x, (2)

where A is a normalization constant.

To find the conditions for this function to be physically acceptable, we
calculate the probability density

|ψ(x)|2 = |A|2e(1/h̄)Im[(α/β)x2−2(f/β)x]. (3)

This quantity will not have an unphysical growth at x→ ±∞ only if

Im
(
α

β

)
< 0. (4)

In particular, the operator x̂+ip̂ has reasonable eigenfunctions (α/β = −i)
while x̂ − ip̂ has not (α/β = i). Later, studying the harmonic oscillator,
we will understand this difference in more physical terms.

An observable quantity corresponds to a Hermitian operator. On the
class of functions we consider acceptable, x̂ and p̂ are Hermitian operators.
Therefore F̂ is observable if α and β are real numbers. Then Im(α/β) = 0,
and the probability density (3) becomes

|ψ|2 = |A|2e−(2/h̄β)xIm f . (5)

This result is again unacceptable since the probability density exponen-
tially increases in one direction of the x-axis. The only allowed case cor-
responds to Im f = 0. This means that allowed eigenvalues f are real,
as it should be for a Hermitian operator. We conclude that, for an ob-
servable F̂ , the physical spectrum consists of all real numbers f , and each
eigenvalue corresponds to a unique eigenfunction (2) (no degeneracy).

For two eigenfunctions (2) corresponding to the real eigenvalues f, f ′ and
real parameters α, β we find∫ ∞

−∞
dxψ∗fψf ′ = A∗

fAf ′

∫
dx e(i/h̄β)(f ′−f)x = 2πh̄|β|δ(f ′ − f). (6)
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Here we have used a standard formula

δ(ax) =
1
|a|
δ(x), (7)

which follows from the limiting process of defining the δ-function as an
even function of its argument. As it should be for an Hermitian operator,
the eigenfunctions corresponding to different eigenvalues are orthogonal.
It is easy to see that for complex values of the parameters it would be no
orthogonality. Now we can choose for all f

Af =
1√

2πh̄|β|
;

∫ ∞

−∞
dxψ∗fψf ′ = δ(f ′ − f). (8)

With this normalization we can check the completeness of the continuous
spectrum of the eigenvalues {f}:∫ ∞

−∞
df ψf (x)ψ∗f (x′) =

1
2πh̄|β|

e(iα/h̄β)(x2−x′2)

∫
df e(i/h̄β)(x−x′)f . (9)

The integral here equals 2πh̄|β|δ(x − x′); with x = x′ the exponential
factor in front of the integral becomes 1, and∫ ∞

−∞
df ψf (x)ψ∗f (x′) = δ(x− x′), (10)

as required for completeness.

2. a. Let us denote by a tilde the transformed functions,

ψ̃(r) = P̂ψ(r) = ψ(−r), (11)

and transformed operators

˜̂O = P̂ÔP̂−1. (12)

The new operators have the same physical amplitudes (matrix elements)
between new functions as the old operators between old functions,∫

d3r ψ̃∗1(r) ˜̂Oψ̃2(r) =
∫
d3r ψ∗1(r)Ôψ2(r). (13)

Here we use the coordinate representation of the wave functions. For
Ô ⇒ r̂ we find∫

d3r ψ̃∗1(r)˜̂rψ̃2(r) =
∫
d3r ψ∗1(−r)˜̂rψ2(−r) = −

∫
d3r ψ∗1(r)˜̂rψ2(r).

(14)
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On the other hand, according to eq. (13), this integral has to be equal to∫
d3r ψ∗1(r)r̂ψ2(r).

The comparison shows that

P̂ r̂P̂−1 ≡ ˜̂r = −r̂, (15)

as it must be for spatial inversion. Analogously we find for the momentum
operator p̂: ∫

d3r ψ∗1(r)p̂ψ2(r) =
∫
d3r ψ∗1(−r)˜̂pψ2(−r). (16)

Changing the integration variable r→ −r in the left hand side, we obtain∫
d3r ψ∗1(−r)

(
−ih̄ ∂

∂(−r)

)
ψ2(−r) = −

∫
d3r ψ∗1(−r)p̂ψ2(−r), (17)

and the comparison with (16) shows that

P̂p̂P̂−1 ≡ ˜̂p = −p̂, (18)

in agreement with the classical definition p = mṙ, which is valid also for
quantum equations of motion. Vectors, such as r and p, which change
sign under spatial inversion, are called polar vectors. On the other hand,
the orbital momentum vector L = [r× p] behaves in an opposite way: its
components do not change sign under inversion:

P̂L̂P̂−1 = [(P̂ r̂P̂−1)× (P̂p̂P̂−1] = L̂. (19)

Such vectors are called axial vectors, or pseudovectors.

b. Using the relation between the coordinate, ψ(r), and momentum, φ(p),
wave functions, we require that the two forms of the operator, Ôcoord and
Ômom, acting onto ψ(r) and φ(p), respectively, would keep intact the
connection between the two functions via the Fourier-transformation:

Ôcoordψ(r) =
∫

d3p

(2πh̄)3
e(i/h̄)(p·r)Ômomφ(p). (20)

For the inversion operator this gives∫
d3p

(2πh̄)3
e−(i/h̄)(p·r)φ(p) =

∫
d3p

(2πh̄)3
e(i/h̄)(p·r)P̂momφ(p). (21)

Changing the integration variable p→ −p, we see that

P̂momφ(p) = φ(−p). (22)
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The inversion operator acts identically in the coordinate and momentum
representations.

For the translation operator the same procedure gives

D̂coord(a)ψ(r) =
∫

d3p

(2πh̄)3
e−(i/h̄)p·(r−a)φ(p) =

∫
d3p

(2πh̄)3
e(i/h̄)(p·r)D̂momφ(p).

(23)
Thus, in the momentum representation the spatial displacement induces
the phase transformation,

D̂mom(a)φ(p) = e−(i/h̄)(p·a)φ(p). (24)

This agrees with the general definition of the translation operator

D̂(a) = e−(i/h̄)(p̂·a), (25)

which is valid in an arbitrary representation.

c. If a coordinate function has a certain parity Π = ±1,

ψ(r) = Πψ(−r), (26)

we find for its momentum counterpart

φ(p) =
∫
d3r e(−i/h̄)(p·r)ψ(r) = Π

∫
d3r e(−i/h̄)(p·r)ψ(−r) =

Π
∫
d3r e(i/h̄)(p·r)ψ(r) = Πφ(−p). (27)

3. The normalized stationary wave functions for a particle confined to a
potential box 0 ≤ x ≤ a are

ψn(x) =

√
2
a

sin
(nπ
a
x
)
, n = 1, 2, ... (28)

The distribution of coordinates is given by

wn(x) = |ψn(x)|2 =
2
a

sin2
(nπ
a
x
)
. (29)

For the following calculations we need the integrals∫
dxx sin2 x =

1
4

[
x2 − x sin(2x)− 1

2
cos(2x)

]
, (30)

∫
dxx2 sin2 x =

x3

6
−

(
x2

4
− 1

8

)
sin(2x)− x cos(2x)

4
. (31)
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Obviously, the mean value of the coordinate is at the middle of the box,

〈n|x|n〉 =
∫ a

0

dxxwn(x) =
a

2
. (32)

The mean square value of the coordinate is equal to

〈n|x2|n〉 = a2

[
1
3
− 1

2(πn)2

]
, (33)

and the dispersion of the coordinate

(∆x)2n = 〈n|x2|n〉 − 〈n|x|n〉2 =
a2

12

[
1− 6

(πn)2

]
. (34)

b. The Fourier-transformation leads to the wave function in the momen-
tum representation

φn(p) =
∫ a

0

dx e−(i/h̄)pxψn(x) =
√

2a
[
1− (−)ne−(i/h̄)pa

] (πn/a)
(πn/a)2 − (p/h̄)2

.

(35)
From here we find the distribution function for the momentum

wn(p) = |φn(p)|2 =
4
a
[1− (−)n cos(pa/h̄)]

(πn/a)2

[(πn/a)2 − (p/h̄)2]2
. (36)

An apparent divergence at the points p = ±nπh̄/a is compensated by the
zeros of the square bracket.

In order to calculate the expectation values of p and p2 it is easier to use the
coordinate representation and the corresponding operator p̂ = −ih̄(d/dx).
Then we see immediately that

〈n|p̂|n〉 = 0, (37)

as expected for a standing wave. The mean square momentum is

〈n|p̂2|n〉 = (∆p)2n =
(
πh̄n

a

)2

, (38)

as it was easy to figure out from known energies (inside the box the total
energy is kinetic one),

En = 〈n|K̂|n〉 =
π2h̄2n2

2ma2
=
〈n|p̂2|n〉

2m
. (39)

The uncertainty product can be found from (34) and (38):

(∆x)2n(∆p)2n =
h̄2

12
[
(πn)2 − 6

]
. (40)

5



The uncertainty relation holds: even for the minimum case, n = 1,

(∆x)n(∆p)n = h̄

√
π2 − 6
2
√

3
>
h̄

2
. (41)

When one starts to think about the fluctuation of kinetic energy, the
situation seems to be contradictory. Naively, one would say, as we did
above, that inside the box the total Hamiltonian is reduced to kinetic
energy, Ĥ → K̂, the value of energy is fixed on the level En, and therefore
kinetic energy does not fluctuate, 〈n|K̂2|n〉 = 〈n|K̂|n〉2. On the other
hand, if we use the momentum probability density (36) for calculating

〈n|K̂2|n〉 =
∫ ∞

−∞

dp

2πh̄
wn(p)

p4

4m2
, (42)

we would see that this integral diverges at large momenta. Indeed, at
|p| → ∞, the distribution density wn(p) ∝ p−4, and the integral with p4

from the operator K̂2 is divergent.

To resolve this controversy, we need to discuss the physical procedure of
measuring the value of kinetic energy. To measure the content of kinetic
energy for the state of a particle confined to a box, we need to instantly
remove the walls and allow the particle to move freely. The wave function
has no time to change. But now the momentum is a constant of motion (no
potential walls any longer) so that each momentum component propagates
independently and can be registered with the probability wn(p). Repeat-
ing the experiment many times, we can extract the distribution function
of the momentum or kinetic energy. Then the result should agree with the
calculation according to eq. (42) and give 〈K2〉 → ∞. By the way, this is
a real way of measuring the momentum distribution for atoms in a trap,
for example in the studies of the Bose-Einstein condensate. The trap is
suddenly removed, and the momenta are measured of free atoms (in those
experiments the trap potential is close to that of a harmonic oscillator).

A correct consideration in the coordinate representation leads to the same
conclusion of divergency. Indeed, having in mind the discussed above
procedure of measurement, we need to consider the wave function in entire
space. As we have seen in the derivation of the boundary conditions for an
impenetrable wall, the condition ψ = 0 on the wall is a result of a limiting
transition from a finite wall to the infinite one. In this consideration kinetic
energy is not equal to the total Hamiltonian because of the presence of
the walls. As a function in entire space, the wave function in the box
is continuous at the wall, the first derivative has a finite discontinuity
(zero outside and finite inside), and the second derivative is infinite, as a
consequence of having the infinite potential. This infinity generates very
high Fourier-components responsible for the divergence of the integral in
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the momentum representation. Therefore the calculation of 〈p̂4〉 should
go as follows:

〈n|p̂4|n〉 =
∫ ∞

−∞
dxψ∗n(x)p̂4ψn(x) =

∫ ∞

−∞
dx

∣∣∣p̂2ψn(x)
∣∣∣2 , (43)

where we used the Hermiticity of the operator p̂4, and now we see that the
integral contains the square of the second derivative of the wave function.
The second derivative is infinite at the boundaries, i.e. contains contribu-
tions δ(x) and δ(x−a) proportional to the infinite potential. The integral∫
dx [δ(x)]2 = δ(0) is infinite.

4. a. Due to the symmetry of the potential with respect to the middle point
x = 0, solutions can be classified by their parity. This classification ap-
pears naturally in the process of the standard solution, and the even and
odd solutions have rather different properties. In the left half of the box we
need to apply the boundary condition ψ(−a) = 0. Then the appropriate
standing wave can be written as

ψ(x) = A sin[k(x+ a)], −a < x < 0. (44)

Similarly, in the right half of the box

ψ(x) = B sin[k(x− a)], 0 < x < a; (45)

in both cases

k =

√
2mE
h̄2 . (46)

Matching the functions in the middle we obtain

A sin(ka) = −B sin(ka). (47)

There are two ways to satisfy this condition. First, we can have B = −A.
In this case, as it easy to see, ψ(−x) = ψ(x), the solution is an even
function. Second, we can have sin(ka) = 0. In this case, the wave function
vanishes at the origin, ψ(0) = 0, which corresponds to an odd solution.
The odd case is trivial: a particle never sees the partition because the
probability to be at this point is zero. Therefore these levels are exactly
the same as if it were in a box of width 2a without a partition,

ψodd
n =

√
2
2a

sin
(
πh̄

2a
nx

)
, En =

π2h̄2

2m(2a)2
n2, n = 2, 4, ... (48)

The even case, B = −A, requires a special treatment.The matching con-
dition for the derivative of the wave function at the point x = a of the
δ-wall gives

kB cos(ka)− kA cos(ka) =
2mg
h̄2 A sin(ka). (49)

7



With B = −A we find a transcendental equation for the bound states

tan ξ = −ξy, ξ = ka, y =
h̄2

mag
. (50)

This gives an infinite series of the roots, see the drawing. The origin
ξ = ka = 0 is not a solution since here ψ ≡ 0.

b. In this special case y � 1, and the straight line has a small negative
slope. For low-lying levels, the intersection with the curve tan ξ occurs
close to the points tan ξ = 0, ξ = nπ, n = 1, 2, ..., but slightly below those
points:

ξn = nπ − αn, tan ξn ≈ −αn, ; αn ≈ nπy. (51)

These solutions are close to the corresponding odd roots (48),

Eeven
n =

ξ2nh̄
2

2ma2
≈ π2h̄2

2ma2
n2(1− 2y), (52)

so that the splitting can be written as

∆n ≡ Eeven
n − Eodd

n ≈ −2y
π2h̄2

2ma2
n2, n = 1, 2, ... (53)

The level come in pairs with the splitting smaller than the distance to
the next pair En+1 − En for not very large n � 1/y. The ground state
function is always even. Here the coupling between the left and right parts
is weak, and we have the system of levels in a half-well mirrored in an even
or odd fashion in the second half. For the odd case there is no coupling at
all; the presence of the attractive coupling for the even states lowers the
energy.

c.The spectrum of the even states at high energies, ξ � 1/y, corresponds
to the point near the infinite values of tan ξ,

ξn = π

(
n− 1

2

)
+ βn, βn � 1, n = 1, 2, ... (54)

Here

tan ξn ≈ 1/βn = ξny ≈ πy

(
n− 1

2

)
, (55)

and the energies are

Eeven
n ≈ h̄2

ma2

[
π2 (2n− 1)2

8
+

1
y

]
, (56)

being close to the even levels in an empty box of width 2a. The correction
1/y describes a small shift of high levels due to the partition.
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