
SOLUTIONS for Homework #9

1. Exercise 5.4. Obviously, Pn−1 ≡ H ′
n is a polynomial of the (n−1)th order.

Taking the derivative of the Hermite equation

H ′′
n − 2ξH ′

n + 2nHn = 0, (1)

we obtain
H ′′′

n − 2(ξH ′′
n +H ′

n) + 2nH ′
n = 0, (2)

or
P ′′n−1 − 2ξP ′n−1 + 2(n− 1)Pn−1 = 0. (3)

This should be compared with the Hermite equation of the (n−1)th order,

H ′′
n−1 − 2ξH ′

n−1 + 2(n− 1)Hn−1 = 0. (4)

We see that the polynomials Hn−1 and Pn−1 should be proportional,

dHn

dξ
≡ Pn−1 = CnHn−1. (5)

To find the coefficient of proportionality, we use the property

dnHn

dξn
= 2nn!. (6)

Taking (n− 1) times the derivative of eq. (5), we find

2nn! = Cn2n−1(n− 1)! ; Cn = 2n. (7)

Finally,
dHn(ξ)
dξ

= 2nHn−1(ξ). (8)

Exercise 5.5. The normalized harmonic oscillator wave functions are

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

e−ξ2/2Hn(ξ), x =

√
h̄

mω
ξ. (9)

A matrix element of an operator Ô,

〈n|Ô|k〉 =
∫ ∞

−∞
dxψn(x)Ôψk(x), (10)

can be written as

〈n|Ô|k〉 =
1√

π2k+nk!n!

∫ ∞

−∞
dξ e−ξ2/2Hn(ξ)Ôe−ξ2/2Hk(ξ). (11)
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In particular, for Ô = xp,

〈n|xp|k〉 =
(

h̄

mω

)p/2 1√
π2k+nk!n!

In,k;p, (12)

where we have borrowed the notation

In,k;p =
∫
dξ e−ξ2

Hn(ξ)Hk(ξ)ξp (13)

from eq. (5.36), Merzbacher, p. 87. According to the generating equation
[Merzbacher, (5.37)],∑

nkp

In,k;p
sntk(2λ)p

n!k!p!
=
√
πeλ2+2[st+λ(s+t)]. (14)

We need to find In,k;1. To do this, we equate the coefficients in front of
(2λ): ∑

nk

In,k;1
sntk

n!k!
=
√
πe2st(s+ t). (15)

The right hand side can be presented as a series,

√
πe2st(s+ t) =

√
π

∑
r

2r

r!
(sr+1tr + srtr+1). (16)

Thus, the only nonvanishing coefficients among In,k;1 are those for k =
n± 1,

Ir,r+1;1 = Ir+1,r:1 =
√
π2r(r + 1)!. (17)

The resulting expressions follow now from (12) and (17),

〈n|x|n+ 1〉 =

√
h̄

2mω
(n+ 1), (18)

〈n|x|n− 1〉 =

√
h̄

2mω
n, (19)

In an analogous fashion we find that x2 has nonvanishing diagonal ele-
ments, n = k, and off-diagonal with k = n± 2:

〈n|x2|n〉 =
h̄

mω

(
n+

1
2

)
, (20)

〈n|x2|n+ 2〉 =
h̄

2mω

√
(n+ 1)(n+ 2), (21)

〈n|x2|n− 2〉 =
h̄

2mω

√
n(n− 1), (22)
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2. Exercise 5.8. The calculation can be performed with the use of (8) or
more general result (23). The matrix elements of the momentum operator,
similarly to the coordinate matrix elements (18) and (19), do not vanish
only for ∆n = ±1,

〈n|p̂|n+ 1〉 = −i
√
mωh̄

2
(n+ 1), (23)

〈n|p̂|n− 1〉 = i

√
mωh̄

2
n. (24)

Of course, Hermiticity holds,

〈n|p̂|n+ 1〉 = 〈n+ 1|p̂|n〉∗. (25)

The wave packet
Ψ(x, 0) =

∑
n

cnψn(x) (26)

evolves in time according to

Ψ(x, t) =
∑

n

cnψn(x)e−iωt(n+1/2). (27)

Then the time-dependent expectation value of the momentum can be
found as

〈p̂〉t =
∑
nk

c∗ncke
i(n−k)ωt〈n|p̂|k〉. (28)

Using our previous results for the matrix elements 〈n|p̂|n± 1〉 we obtain

〈p̂〉t =
∑

n

c∗n{cn+1e
−iωt〈n|p̂|n+ 1〉+ cn−1e

iωt〈n|p̂|n− 1〉

= −i
√
mωh̄

2

∑
n

√
n{c∗n−1cne

−iωt − c∗ncn−1e
iωt}. (29)

The comparison with eq. (5.55), Merzbacher, p. 90, shows that the equa-
tion of motion is valid,

d

dt
〈x̂〉t =

〈p̂〉t
m

. (30)

Exercise 5.9 follows as a straightforward consequence of found equations
for 〈x̂〉 and 〈p̂〉.

3. The distribution of the oscillator coordinate in the thermal ensemble is
given by

f(x) =
∑

n

ρn(T )ψ2
n(x). (31)
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Note that, due to the normalization of ρn, this distribution is normalized
as well, ∫

dx f(x) = 1. (32)

With the explicit form of the oscillator eigenfunctions,

f(x) =
1
Z
e−(n+1/2)h̄ω/T

√
mω

πh̄

1
2nn!

e−ξ2
H2

n(ξ), ξ =
√
mω

h̄
x. (33)

Here we can use the integral representation of Hermite polynomials [eq.(5.43),
Merzbacher],

Hn(ξ) =
2n

√
π

∫ ∞

−∞
dv(ξ + iv)ne−v2

, (34)

Because of the normalization (32), we can ignore constant factors and
write down eq. (33) in the form

f(x) = const e−ξ2 ∑
n

(2η)n

n!

∫
dv dv′ (ξ + iv)n(ξ + iv′)ne−(v2+v′2), (35)

where
η = e−h̄ω/T . (36)

First we carry out the summation over n,∑
n

(2η)n

n!
(ξ + iv)n(ξ + iv′)n = e2η(ξ+iv)(ξ+iv′). (37)

Now we calculate the two-dimensional Gaussian integral∫
dv dv′ e−(v2+v′2)+2η(ξ+iv)(ξ+iv′) = const e[2η/(1+η)]ξ2

. (38)

Together with the factor exp(−ξ2) from eq. (35), this determines the
Gaussian distribution

f(x) = const e−[(1−η)/(1+η)]ξ2
. (39)

The factor in the exponent here is

1− η

1 + η
=

1− e−h̄ω/T

1 + e−h̄ω/T
= tanh

h̄ω

2T
. (40)

Going back to the coordinate variable x and adding the standard normal-
izing Gaussian factor, we obtain

f(x) =
1√

2πσ2
e−x2/2σ2

, (41)

4



where the width σ is determined by

σ2 =
h̄

2mω
coth

h̄ω

2T
. (42)

In the classical region of high temperature, h̄ω � T ,

coth
h̄ω

2T
≈ 2T
h̄ω

, σ2 ≈ T

mω2
, (43)

the Planck constant disappears, and we come to the classical Boltzmann
distribution

f(x) ∝ e−(mω2/2T )x2
= e−U(x)/T . (44)

In the opposite case of low temperature, h̄ω � T ,

coth
h̄ω

2T
≈ 1, σ2 ≈ h̄

2mω
, (45)

and the distribution becomes that of the ground quantum state,

f(x) = |ψ0(x)|2 ∝ e−(mω/h̄)x2
. (46)

Another derivation of the distribution (41) can be based on the found
earlier matrix elements of the coordinate and momentum, for example
combining the equations for dρ(x)/dx and xρ(x).

4. We solve the stationary Schrödinger equation

− h̄2

2m
d2ψ

dx2
+ U0

(a
x
− x

a

)2

ψ = Eψ. (47)

The potential has a form of a well with the left wall asymptotically ap-
proaching the vertical axis and the parabolic right side. Near the classical
equilibrium point x = a, the potential is close to that of the harmonic os-
cillator with the frequency which can be found by expanding the potential
near this point and approximating it by mω2/2. Here only the discrete
spectrum is possible with E > 0. Introducing dimensionless positive vari-
ables

y =
x

a
, v =

2mU0a
2

h̄2 , s =
2mEa2

h̄2 , (48)

we rewrite the equation for ψ(y) as

d2ψ

dy2
− v

(
y2 +

1
y2

)
ψ + (2v + s)ψ = 0. (49)

Now we are looking at the behavior near the singular points of the equa-
tion; obviously the dangerous regions are y → +∞ and y → 0. At very
large values of y we have an oscillator-like behavior,

d2ψ

dy2
≈ vy2ψ, y → +∞. (50)
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The solution behaves like
ψ ∼ eαy2

. (51)

Then we find

ψ′ = 2αyψ, ψ′′ = (2α+ 4α2y2)ψ ≈ 4α2y2ψ, (52)

and the comparison with (50) shows that

4α2 = v ; α = −1
2
√
v, (53)

where we choose the solution decaying at large distances. Near the origin,
the main terms in the equation are

d2ψ

dy2
≈ v

y2
ψ, y → 0. (54)

This is an equation of Euler type with a solution as a power of the variable
(then both terms lower the power by 2):

ψ ∼ yγ , γ(γ − 1) = v. (55)

In this quadratic equation we need to select the positive root for γ avoiding
the infinite growth of the wave function at small y,

γ =
1
2
[
√

4v + 1 + 1]. (56)

Finally, we introduce the variable

ξ =
√
vy2, (57)

and look for the full solution in the form which accounts for the behavior
near singularities,

ψ = e−ξ/2ξγ/2u(ξ), (58)

where u(ξ) should be a regular function which does not change that be-
havior. We substitute this form into eq. (49), after some algebra verify
that the singular terms cancel out, and we arrive at the equation for u(ξ):

ξu′′ + (A− ξ)u′ −B u = 0, (59)

where
A = γ +

1
2
, B =

γ

2
+

1
4
− s+ 2v

4
√
v
. (60)

Without singularities in eq. (59) we are looking for the solution in the
form of a power series,

u(ξ) =
∑

k

ckξ
k. (61)
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The coefficients ck must satisfy the recurrence relation

ck+1 =
k +B

k(k + 1 +A)
ck. (62)

If the series is infinite, the behavior of high order terms, ck+1 ∼ ck/k coin-
cides with that of the exponential series exp(ξ). That would win against
the decaying exponent in (58) and, whence, lead to an unacceptable growth
of the wave function. This means that the series in fact has to be a finite
polynomial. We have a polynomial of power n in ξ ∝ x2 if cn 6= 0 but
ck>n = 0. This requires B = −n, which is the quantization condition for
energies, s = sn,

sn + 2v
4
√
v

= n+
γ

2
+

1
4
, (63)

or, returning to the original notations for s and γ,

En = h̄ω

(
n+

1
2

+
1
4
√

1 + 4v −
√
v

2

)
. (64)

The spectrum of the problem is that of the harmonic oscillator with fre-
quency

ω =

√
8mU0

h̄2 (65)

and the ground state shifted from (h̄ω/2) by

∆E =
1
4
√

1 + 4v −
√
v

2
. (66)

This shift is always positive; it vanishes only at v → ∞. The frequency
(65) exactly coincides with that of classical oscillations near the equilib-
rium point x = a.

The wave functions can be explicitly constructed with the use of the con-
secutive polynomials un(ξ). The general expression for the wave functions
can be written as

ψn(x) = Nnx
γe−(

√
v/2a2)x2

F

(
−n, γ +

1
2
;
√
v
x2

a2

)
. (67)

Here Nn is the normalization factor; F is the so-called confluent hyper-
geometric function which satisfies eq. (59), and in general is expressed as
an infinite series,

F (B,A; ξ) = 1 +
B

A

ξ

1!
+
B(B + 1)
A(A+ 1)

ξ2

2!
+
B(B + 1)(B + 2)
A(A+ 1)(A+ 2)

ξ3

3!
+ . . . (68)
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The series becomes a finite polynomial for B = −n where n ≥ 0 is an
integer. Many known special functions can be expressed as particular
cases of the confluent hypergeometric function, for example:

Bessel functions, A = 2B
functions of parabolic cylinder, A = 1

2
incomplete gamma-functions, B = 1

Laguerre polynomials, B = −n,

the last case is just our solution.
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