ISP209 Spring 2001 Homework 1	Name:		
Due: Thurs., Jan. 18, 2:40 pm, in Rm 118PA.	SN:		
Homework Problems			
1. Which force, electromagnetic(E), gravitat	ional(G), weak nuclear(WN) or strong		
nuclear(SN), is primarily responsible for the following			
falling from a tree. \mathbf{G}	pressurizing a balloon.		
orbiting of planets.	dissolving sugar in water		
exploding of a firecracker.	coloring of paints.		
fusion of Deuterium in the sun.	melting of an ice cube.		
ebbing of the tide.	ringing of a bell.		
burning of a candle.	breathing the air.		
heating a TV dinner in a microwave oven.			
cycling of ATP & ADP in the body	flying a jet planeand		
air-conditioning a room.	freezing of ice cream.		
firing of a gun.	decay of the isotope Carbon-14		
recording on an audio tape	fertilizing an egg.		
2. What is the common name for the electrom			
it is stretched from its ends?			
exist in addition to the ends of the object?			
3. What is the name of the electromagnetic fo			
squeezing? Whe	re else do these forces exist in addition to		
the ends of the object?			
$\frac{d}{n}$ at	oms		
	2000000		
l = nd			
4. As shown above, the atoms along one edge	of a har $l = 10.00$ cm long are spaced $d =$		
7.130×10^{-9} cm apart. Use the relationship	$\frac{1}{1-nd}$ between the length l and		
	· · · · · · · · · · · · · · · · · · ·		
spacing, d , between the atoms, to determine			
edge of the bar. (use scientific notation with			
expressed answers, and show your work be	low).		
	oms along the length is		
Use the relationship again to answer the nex	xt few questions. (4 significant digits when		
available in the calculations, 3 in the expres	sed answers; and show your work).		

Due: Thurs., Jan. 18, 2:40	pm, in Rm 118PA.	Name: SN:	
When stretched along $L = l + S$, what is the		1.00×10^{-2} cm, for D, along the object?	a new total length,
Along one edge of the beyond the old length	e stretched object, ho	along the length, $D = \frac{1}{2}$ ow many atoms lie in	 the region extending
Along one edge of the		and the old length, $n_b = 0$ with a same with	
_	s above again, consi	nin the old length, $n_w = 1$ idering the number of as a width and height of	of atoms within the
	The new spacing	toms in the bar is along bar's length is _ ond the old bar length i	
		in the old bar length is	
5. In an atom with a diameter nucleus with a r = diameter/2.)		what fraction of the voin? $(V = \frac{4}{3} r^3)$, for	
6. What happens to an obtained distorting forces a forces elastically distorting forces.	ject that is elastically are removed? An obj	upies (fraction) (see text for the defin	ition) distorted when

ISP209 Spring 2001	Homework 1	Name:	
Due: Thurs., Jan. 18,	2:40 pm, in Rm 118PA.	SN:	
beach sand, the wing of an a banana,	wing solids in normal use a guitar string, a n airplane, an igloo, a feather pillow, a objects that do behave el	drum stick, a cice cream tooth pick, ar	concrete walkway, , an accordion, a eyelash.
8. True or false: whe	n balanced forces act on r	my body I don't	feel them.
9. True or false: the f	Forces acting on the atoms	in an undistorte	ed object are balanced.
10. How does a neutr	ral object obtain a positive	e charge?	
	ned that light combined tent) forces?		nich two (previously thought
measurement sta	anding at rest, (Don't a Michelson and Morley e	nswer this que xperiment in sec	ng toward its source to a estion without reading the ction B of this chapter) does a not) change
On the Earth, doe	es the measured speed of	a car depend on	the speed of the observer?
	The speed of a c	ar (does or does	not) change.
Who developed the s	ingle theory that can expl	ain both phenon	nena?
	o conditions that must be lace an existing theory?	e met by a new	theory of nature before it is
1. 2.			
	battery to move electron	-	e of the battery to the other?
_	reactions mo	ove electrons fro	m the + pole to the – pole.
15. How many oxyge	en atoms are contained with	thin a molecule	of oxygen gas?
	en to oxygen molecules water molecules (see text)		as is used to burn hydrogen
D## (1-2) to 101111	included (See tent)		<u> </u>

ISP209 Spring 2001	Homework 1	Name:	
Due: Thurs., Jan. 18, 2:4	0 pm, in Rm 118PA.	SN:	